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1. Definition of the Constant

Let g(m,n) be the number of m × n binary matrices which have no adjacent
ones. That is, the number of matrices (mij) such that

(1) mij = 1→ m(i+1)(j) = 0 and m(i)(j+1) = 0

Define c(m,n) to by

(2) c(m,n) = g(m,n)
1
mn

As the size of the matrix approaches infinity, c(m,n) approaches a limit.

(3) lim
m,n→∞

c(m,n) = κ

This limit κ is known as the hard square entropy constant.
This constant is non-trivial to bound. Naive attempts to formulate bounds on

it result in constant bounds that 1 ≤ κ ≤ 2. These bounds do not improve as n
increases.

2. History of the Constant

There is model of gasses used in statistical physics called the hard sphere gas
model. One of the common simplifications to this model is to assume that all of
the gas molecules lie at grid points in a plane and only interact with their four
grid-neighbors. The grid is taken to be rigid and square, hence the “hard square”
portion of the name.

R. J. Baxter, I. G. Enting, and S. K. Tsang wrote [2] in 1980. It was the first
appearance of this constant. In that paper, they refered to κ as “the partition
function per site.” The thrust of their paper was to calculate a different physical
constant, and thus they did not spend much time on the hard square entropy
constant.
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~v1 = (0, 0, 0, 0)
~v2 = (0, 0, 0, 1)
~v3 = (0, 0, 1, 0)
~v4 = (0, 1, 0, 0)
~v5 = (0, 1, 0, 1)
~v6 = (1, 0, 0, 0)
~v7 = (1, 0, 0, 1)
~v8 = (1, 0, 1, 0)

T =



1 1 1 1 1 1 1 1
1 0 1 1 0 1 0 1
1 1 0 1 1 1 1 0
1 1 1 0 0 1 1 1
1 0 1 0 0 1 0 1
1 1 1 1 1 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0


Figure 1. Permissible length four vectors and the corresponding
transfer matrix

According to [4], Prodinger and Tichy called g(m,n) the Fibonacci number of a
matrix. Weber showed that if mn > 1, then

(4) 1.45mn < g(m,n) < 1.74mn

In 1990, Konrad Engel wrote [4]. Engel formulated the problem in terms of sets
of ordered pairs. Adapted to his notation, the function g(m,n) is expressed as
follows:

Zm,n = {(i, j) |1 ≤ i ≤ m, 1 ≤ j ≤ n}
Am,n = {A ⊆ Zm,n |(i1, j1), (i2, j2) ∈ A→ |i1 − i2|+ |j1 − j2| 6= 1}

g(m,n) = |Am,n|
(5)

Engel went on to place bounds on the hard square entropy constant.
Engel employed what is known as the Corner Transfer Matrix method. In the

Corner Transfer Matrix method, one considers binary vectors of length m which
have no adjacent ones. There are Fm+2 such vectors where Fm+2 is the (m+ 2)-th
Fibonacci number.

It is easy to see how the Fibonacci numbers came into the picture. Consider the
permissible vectors of length m. If the vector starts with zero, then the other m−1
elements can be any permissible vector of length m − 1. If the vector starts with
one, the second element must be zero and the remaining m−2 elements can be any
permissible vector of length m− 2. Thus,

(6) g(m, 1) = g(m− 1, 1) + g(m− 2, 1)

subject to these starting conditions:

g(1, 1) = 2

g(2, 1) = 3
(7)

It is clear that g(m, 1) = Fm+2.
Next, one labels all of these vectors ~vi. One then constructs the transfer matrix

of all of these binary vectors. The entry tij in the transfer matrix is one if the
vector ~vi is orthogonal to the vector ~vj and zero otherwise. The permissible vectors
of length four and the corresponding transfer matrix are shown in figure 1.

Engel used the largest eigenvalues of these transfer matrices to bound κ. Engel
showed that if λm is the largest eigenvalue of the transfer matrix for binary vectors
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of length m, then

(8)
λ(2`)

λ(2`−1)
≤ κ ≤ λ

1
k

k

Engel used these results to obtain the following bounds on κ:

(9) 1.503 ≤ lim
n→∞

g(n, n)1/n2
≤ 1.514.

Engel further conjectured that

(10) g(m, 2k)2 ≥ g(m, 2k − 2)g(m, 2k + 2)

From this, one can prove that:
(11)
g(m, 2)
g(m, 1)

<
g(m, 4)
g(m, 3)

<
g(m, 6)
g(m, 5)

< . . . < λm < . . . <
g(m, 5)
g(m, 4)

<
g(m, 3)
g(m, 2)

<
g(m, 1)
g(m, 0)

If this were true, it would place a much tighter upper bound on κ.
In [3], Calkin and Wilf extended Engel’s Corner Transfer Matrix methods to

provide tighter bounds. They made the observation that the checkerboard pattern
in an n × n matrix is a valid pattern with 2n

2/2 subsets. Using this, and several
other geometric arguments, they strengthened the bounds given by Engel.

Baxter employed Calkin and Wilf’s bounds to calculate the hard square entropy
constant to forty three decimal places in [1]:

(12) κ = 1.5030480824753322643220663294755536893857810

3. Alternative Formulations

McKay, in [6], gave an alternative proof of bounds weaker than those of [3].
McKay used arguments based on legal configurations of integer multiples of known
matrices. McKay defined c(m,n) to be g(m,n)

1
mn . Then, he proved that for

integers m, n, a(m+ 1), and b(n+ 1), where a, b ≥ 1 (though a and b need not be
integers), that

(13) c(m,n)θ ≤ c(a(m+ 1), b(n+ 1)) ≤ 21−θc(m,n)θ

where

(14) θ =
bac
a

bbc
b

m

m+ 1
n

n+ 1
.

Although this formulation has weaker bounds than [3], it allows one to evaluate the
limiting behaviour of a greater variety of permissible configurations.

The quantity g(m,n) can be expressed in terms of graphs as the number of
independent sets of vertices in an (m+ 1)× (n+ 1) grid graph.

It can also be expressed in game terms as the number of configurations of non-
attacking princes on an m×n board. A prince is a piece which can move one space
horizontally or vertically.

Additionally, it can be formulated as the number of walks of length n in or-
thogonal directions amongst the permissible vectors in g(m, 1). In fact, it is this
formulation which permits the Corner Transfer Matrix method above. The trans-
fer matrix is simply the adjacency matrix A of this graph. The number of possible
walks is

(15) ~1TAn~1
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0

1 0 0

Figure 2. Pieces used to tile the quarter plane

And, it can be formulated as a tiling problem as the number of ways one can tile
a quarter plane using the pieces in figure 2 without rotating the pieces.

The author attempted to formulate tighter bounds for κ based on the previous
two methods. However, at his best, he achieved only [3]’s lower bound and the
trivial upper bound 2.
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