[size=24][b]About this thread:[/b][/size]
I’ve gotten a little sick of PS3’s hardware being misunderstood and incorrectly compared to other consoles/PCs out there. It’s shocking to note that even key figures in the gaming industry have made ignorant statements about the Playstation 3. Debates also come up in this forum in threads which initially have nothing to do with the hardware or what it is capable of. This thread is supposed to be a dump and debate of all of that technical information and what it actually means the Playstation 3 can or can’t do – and possibly the likelihood that it will actually do what it can.
In this initial post I will cover all of the information I know through research, my analysis on it as far as what the Playstation 3 can do, and extend it with common comparisons to other hardware out there. I will also include a reference list of the numerous places where I found my information. If you are going to engage in discussion in this thread, I suggest you read at least a couple of the relevant articles on what you are talking about. I also suggest you have basic computer knowledge before backing up what some press source claims says if it’s highly technical.

In this thread, do not state “PS3 can/can’t do this because [insert spokesperson] said so.” Provide technical, analytical, or logical backup of your own, or that person’s own explanation on why they believe so. Debate will be on the analysis and backup and not settled by the rank of the people who made whatever statements. In other words, if a spokesperson says something and gives shallow backup, a counter argument with [i]valid[/i] and [i]further[/i] analysis overrides it.
[size=24][b]My Credentials:[/b][/size]
I am no John Carmack. I am 20 years old, and in college for Computer Science. I programmed in BASIC when I was 7 on some IBM PC with a wireless keyboard, cartridge drive, and 5 ¼ floppy drive. I started learning HTML in 5th grade and continued making web pages until before 10th grade when I got bored and switched to learning C, moving quickly to C++. After a year of mostly learning from books, coinciding with a high school course, I moved to learning some of the basics of the Win32 API to move on towards game programming, which I did only after a few months. A few of the APIs I picked up were DirectDraw7, Direct3D8, DirectInput7/8, and OpenGL. I got pretty far with DirectDraw, but stopped considerably short in actually applying much of what I read about the 3D APIs since it was difficult to make content for 3D programs to demonstrate things, and I couldn’t think of a reasonably sized project to motivate me to make significant 3D content and go on to implement it in a game by myself. I still understand the foundations of 3D computer graphics and the types of processes that need to occur to render a 3D scene since my approach is always to learn things from the ground up. While I can simply use functions handed to me in 3D APIs like Direct3D and OpenGL, I knew at some point, it wouldn’t be good enough if I wanted to be better than the rest and make improvements over what was simply [i]given[/i] to me by libraries.
I have taken a course on computer organization in college. In that course I learned how to combine simple logic gates to perform various tasks, various ways of how memory is implemented in hardware(RAM and cache), how to implement a RISC processor in hardware – pipelined and non-pipelined, how to program in MIPS assembly, and other design issues with processors (branch prediction, multithreading, and micro-programming).
I am still an undergrad and my expertise is far from industry leading, but it is enough to understand what is going on with the hardware of the consoles when they are explained to a high enough degree of technical granularity such that I can connect it to what I already know. I have also done probably over a month of research on this generation’s console war focusing on PS3 and Xbox360 hardware, but I also branched out to relevant topics concerning processors and processing, and even revisited last generation’s console war hardware differences.
The reason for this hasty “life story” is to show that I do have background that backup my analysis. It might not be 100% valid, and clearly there are some perspectives where the focus or priorities shift. The perspective I am using in this post is for games processing applications.
[size=24][b]PS3 Hardware:[/b][/size]
The Playstation 3 is a gaming console(or computer system) that utilizes a Cell processor with 7 operational SPEs with access to 256MB of XDR RAM, an RSX graphics chip with 256MBs of GDDR3 RAM and access to the Cell’s main memory, a blu-ray drive for gaming and movie playback, and a 2.5” hard disc drive. Other components of the system are Bluetooth support used for wireless motion-sensing controllers, 4 USB ports, and a gigabit Ethernet port. On the more expensive version of the Playstation 3 there is also a Sony Memory Stick reader, Compact Flash reader, SD card reader, WiFi support(basically an extra network interface which is wireless), and an HDMI output.
The Playstation is capable of outputting 1080p signals through all of its outputs, though it is possible that with blu-ray movie playback, a token(ICT) can be present which forces down-sampling of 1080p to 540p if the signal goes through a non-certified interface (non-HDMI).
The Playstation 3’s audio will be handled by the Cell processor. There are many supported codecs representing high quality formats for digital entertainment, but since it is done on the Cell processor, game developers are at leisure to output any format they wish. This means 6.1, 7.1, 8.1, or beyond audio is possible unless a later change actually does restrict what is possible to output.
[size=22][u]The Cell Processor:[/u][/size]
The Cell inside the Playstation 3 is an 8 core asymmetrical CPU. It consists of one Power Processing Element(PPE), and 7 Synergistic Processing Elements(SPE). Each of these elements are clocked at 3.2GHz and are connected on a 4 ring Element Interconnect Bus(EIB) capable of a peak performance of ~204.8GB/s. Every processing element on the bus has its own memory flow controller and direct memory access (DMA) controller. Other elements on the bus are the memory controller to the 256MB XDR RAM, and the Flex phas i/o controller(FlexIO).
The FlexIO bus is capable of ~60GB/s bandwidth. Massive chunk of this bandwidth is allocated to communicate with the RSX graphics chip, and the remaining bandwidth is where the southbridge elements lie such as sound, optical media(blu-ray/dvd/cd), network interface card, hard drive, USB, memory card readers, Bluetooth devices(controllers), and WiFi. This may sound like a lot to share with the RSX, but consider that aside from the RSX, the other components are using bandwidth in the MB/s scale, not GB/s, so even if add all of them up there is still plenty of bandwidth left.
I actually recommend you skip down to the Xbox360 hardware comparison and look at the Cell and Playstation 3 hardware diagrams before you continue reading so you get a better idea of how things come together on the system as I explain it.
[size=18][b]Power Processing Element:[/b][/size]
The PPE is based on IBM’s POWER architecture. It is a general purpose RISC(reduced instruction set) core clocked at 3.2GHz, 16kb L1 instruction cache and 16kb L1 data cache, with a 512kb L2 cache. It is a 64-bit processor with the ability to fetch four instructions and issue two in one clock cycle. It is also able to handle two hardware threads. It comes with a VMX-128 vector unit with 32 register. The PPE is an in-order processor with delayed execution and limited out-of-order support for load instructions.
[size=18][b]PPE Design Goals:[/b][/size]
The PPE is designed to handle the general purpose workload for the Cell processor. While the SPEs are capable of executing general purpose code, they are not the best suited to do so. Compared to Intel/AMD chips, the PPE isn’t as fast for general purpose computing considering its in-order architecture and comparably less complex branch prediction hardware. This likely will prevent the Cell from replacing or competing with Intel/AMD chips on desktops, but in the console and multimedia world, the PPE is more than capable in terms of keeping up with the general purpose code used in games and household devices. Playstation 3 will not be running MS word.
The PPE is also simplified to save space and improve power efficiency with less heat dissipation. This also allows the processor to be clocked at higher rates. To compensate for some of the hardware shortcomings of the PPE, IBM is an effort to improve compiler generated code to utilize better instruction level parallelism. This would reduce the penalties of in order execution.
The VMX-128 unit on the PPE is actually a SIMD unit. This gives the PPE some vector processing ability, but as you’ll read in the next section; the SPEs are better equipped for vector processing tasks. The vector unit on the PPE is probably there in case a task that is better run on the PPE has some vector computations needed, but doesn’t perform overall better if the task was being done on an SPE, or if the specific chunk of work had to be handed off to an SPE, it bring in the
[size=18][b]Synergistic Processing Element and the SIMD paradigm:[/b][/size]
The SPEs on the Cell are the computing powerhouses of the Cell processor. They are independent vector processors running at 3.2GHz. A vector processor is also known to be a single instruction multiple data (SIMD) processor. This means that for a single instruction, let’s say addition, that operation can be performed in one cycle using more than one operand, effectively adding pairs, triples, quadruples of numbers in one cycle instead of taking up 4 cycles in sequence. Here is an example of the different approaches to an example problem of adding the numbers 1 and 2 together, 3 and 4, 5 and 6, and 7 and 8 to produce 4 different sums.
On a traditional desktop CPU (scalar), the instructions are handled sequentially.

[code]

1. Do 1 + 2 -> Store result somewhere

2. Do 3 + 4 -> Store result somewhere

3. Do 5 + 6 -> Store result somewhere

4. Do 7 + 8 -> Store result somewhere

[/code]

On a vector/SIMD CPU (superscalar) the instruction is issued once, and executed simultaneously for all operands.

[code]

1. Do [1, 3, 5, 7] + [2, 4, 6, 8] -> Store result vector [3, 7, 11, 15] somewhere
[/code]

You can see how SIMD processors can outdo scalar processors by an order of magnitude when computations are parallel. The situation does change when the task isn’t parallel like in the case of adding a chain of numbers like, 1 + 2 + 3. Quite simply, a processor has to get the result of 1 + 2, before adding 3 to it and nothing can avoid the fact that this operation will take 2 instructions that cannot occur simultaneously. Just to get your mind a bit deeper into this paradigm, consider 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. On the surface, you might count 7 operations are necessary to accomplish this problem assuming the sums have to be calculated before moving forward. However, if you try to SIMD-ize it, you would realize that this is actually still only 3 operations. Allow me to walk you through it:
[code]

1. Do [1, 3, 5, 7] + [2, 4, 6, 8] -> Store result in two vectors [SUM1, SUM2, 0, 0] and [SUM3, SUM4, 0, 0;

2. Do [SUM1, SUM2, 0, 0] + [SUM3, SUM4, 0, 0] -> Store result in two vectors [SUM5, 0, 0, 0]; [SUM6, 0, 0, 0].

3. Do [SUM5, 0, 0, 0] + [SUM6, 0, 0, 0] -> Store result in vector.

[/code]

Careful inspection of the previous solution would show two flaws. One is the optimization issue of parts of the vector not being used for the operation. Those used parts of the vector could have been used to perform operations useful for other parts of the program. It would be a huge investment on time if developers tried to solve this problem manually by filling vectors where their code isn’t already plainly vector based. That type of thing IBM is placing on compilers to be able to look into the code for parallelism – specifically instruction level parallelism (ILP).
The other huge problem (which I know is there but know less about), is in the fact that vector processors probably naturally store results in a single vector. It would require some interesting misaligned calculations, shifts and/or copies of data to place the results in a position where they are ready to perform the next step. I am not too well versed in how this can be accomplished or if the SPEs have the ability to do something like this so I’ll leave it up to further discussion. [i]Upon further research, “vector permute/alignment” seems to be the topic that address this problem. It seems the SPE instruction set down allow for inter-vector operations. Dot products, are one instruction.[/i]
The SPE inside of the Playstation 3 sports a 128*128bit register file (128 registers, at 128bits each), which is a lot of room to also unroll loops to avoid branching. At 128 bits per register, this means that an SPE is able to perform operations on 4 operands 32bits wide each. Single precision floating point numbers are 32 bits which also explains why Playstation 3 sports such a high single precision floating point performance. Double precision floating point numbers are 64-bits long and slows the processing down an order of magnitude because only 2 operands can fit inside a vector, and I’m pretty sure it also breaks the SIMD processing ability since no execution unit can work on 2 double precision floating points at the same time, meaning that the SPE will perform double precision computations in a scalar fashion.
[QUOTE]“An SPE can operate on 16 8-bit integers, 8 16-bit integers, 4 32-bit integers, or 4 single precision floating-point numbers in a single clock cycle.”[/QUOTE] – Cell microprocessor wiki. That matches up with my prediction pretty much, but I haven’t been able to find any other sources that suggest or state this. It is a very logical explanation.

The important thing to note is that vector processing, and vector processors are synonymous with SIMD architectures. Vectorized code, is best run on a SIMD architecture and general purpose CPUs will perform much worse on these types of tasks.

[size=18][b]SIMD Applications:[/b][/size]
Digital signal processing (DSP), is one of the areas where vector processors are used. I only bring that up because *you know who* would like to claim that it is the [i]only[/i] practical application for SIMD architectures.
3D graphics are also a huge application for SIMD processing. A vertex/vector(term used interchangeably in 3D graphics) is a 3D position, usually stored with 4 elements. X, Y, Z, and W. I won’t explain the W because I don’t even remember exactly how it’s used myself, but it is there in 3D graphics. Processing many vertices would be very slow on a traditional CPU which would have to individually process each element of the vector instead of processing the whole thing simultaneously. Needless to say, GPUs most definitely have many SIMD units (possibly even MIMD), and is why they vastly out perform CPUs in this respect. Operations done on the individual components of a vector are independent which makes the SIMD paradigm an optimal solution to operate on them.
To put this in context, I don’t know if any of you remember 3D computer gaming between low end and high end computers between 1995 and 2000. Although graphics accelerators were out, some of them didn’t have “Hardware T&L”(transform and lighting). If you recall games that had the option to turn this on or off (assuming you had it in hardware), you could see the huge speed difference if it was done in hardware vs not. The software version still looked worse after they generally tried to hide the speed difference by using less accurate algorithms/models. It is this type of situation, the Cell is actually equipped to do relatively well, and traditional scalar CPUs would still perform vastly worse.

It is worthwhile to note that “hardware” in the case of 3D graphics generally refers to things done on the GPU, and “software” just means it is running on the CPU – even though they are both pieces of hardware executing the commands in the end. Software just refers to the part that is controlled by the software the programmer writes.
There are image filters algorithms that occur in applications like Adobe Photoshop which are better executed by vector processors too. Many simulations that occur on super computers are better suited to run on SPEs (toned down in accuracy appropriate for gaming). Some of these simulations include cloth simulation, terrain generation, physics, and particle effects.
[size=18][b]SPE Design Goals – no cache, such small memory, branch prediction?[/b][/size]
The SPEs don’t have a cache in the traditional sense of it being under hardware control. It uses 256kb of on-chip, software controlled SRAM. It reeks of the acronym “RAM” but offers latency similar to those of a cache and in fact, some caches are implemented using the exact same hardware – for all practical purposes, this memory is a controlled cache.
Having this memory under software control places the work on the compiler tools, or programmers to control the flow of memory in and out of the local store. For games programming, this is actually generally the better approach if performance is a high priority. Traditional caches have the downside of being non-deterministic for access times. If a program tries to access memory that is in discovered in cache(cache-hit), the latency is only around 5-20 cycles and not much time is lost. If the memory is not discovered in cache(cache-miss), the latency is in the hundreds of cycles. This variance in performance is very undesirable in games as steady frame rates are much more visually pleasing than variable ones.
IBM is placing importance on compiler technology to manage the local storage well unless the application wishes to take explicit control of this memory themselves (which higher end games will probably end up doing). If it is accomplished by compilers, then to a programmer, that local storage is a cache either way since they don’t have to do anything to manage it.
The local storage is the location for both code and data for an SPE. This does make the size seem extremely limited but rest assured that code size is generally small, especially with SIMD architectures where the data size is going to be much larger. Additionally, the SPEs are all connected to other elements at extremely high speeds through the EIB, so the idea is that even though the memory is small, data will be updated very quickly and flow in and out of them. To better handle that, the SPE is also a VLIW processor that can dual can dual-issue instructions to an execution pipe, and to a load/store pipe. Basically, this means the SPE can simultaneously perform computations on data while loading new data and moving out processed data.
The SPEs have no branch prediction except for a branch-target buffer(hardware), coupled with numerous branch hint instructions to avoid the penalties of branching through software controlled mechanisms. Just to be clear right here – this information comes from the Cell BE Programming Handbook itself and thus overrides the numerous sources that generally have said “SPEs have no branch prediction hardware.” It’s there, but very limited and is controlled by software and not hardware, similar to how the local storage is controlled by software and is thus not called a “cache” in the traditional sense.
[size=22][u]How the Cell “Works”:[/u][/size]

This could get very detailed if I really wanted to explain every little thing about the inner workings of the Cell. In the interest of time, I will only mention some of the key aspects so you may get a better understanding of what is and isn’t possible on the Cell.
There are 11 major elements connected to the EIB in the Cell. They are 1 PPE, 8 SPEs, 1 FlexIO controller, and 1 memory controller. In the setup for the Playstation 3, one SPE is disabled so there are only 10 operational elements on it. When any of these elements needs to send data or commands to another element on the bus, it sends a request to an arbiter that manages the EIB. It decides what ring to put the data on, and when to do it to efficiently distribute resources and avoid contention. With the exception of the memory controller (connected to RAM), any of the elements on the EIB can make requests to read or write data from other elements on the EIB. IBM has actually filed quite a number of patents on how the EIB works alone to make the most efficient use of its bandwidth. The system of bandwidth allocation does breakdown in detail, and in general, I/O requests are handled with the highest priority.
Each processing element on the Cell has its own memory controller. For the PPE, this is transparent since it is the general purpose processor. A load/store instruction executed on the PPE will go through L2 cache and ultimate make changes to the main system memory without further intervention. Underneath the hood though, the memory controller the PPE sets up a request to the arbiter of the EIB to send its data to the memory controller of the system memory. This event is transparent to the load/store instruction on the PPE so that RAM is its main memory. The SPEs are under a different mode of operation. To the SPEs, a load/store instruction works on its local storage. The SPE has its own memory controller to access system RAM just like the PPE, but it is under software control. This means that programs written for the SPE have to set up manual requests on their own to read or write to the system memory that the PPE primarily uses. The messages could also be used to send data or commands to another element on the EIB.
This is important to remember because it means that all of the elements on the EIB have equal access to any of the hardware connected to the Cell on the Playstaiton 3. Rendering commands could come from the PPE or and SPE seeing as they both have to ultimately send commands and/or data to the I/O controller which is where the RSX is connected. On the same idea, if any I/O devices connected through FlexIO have a need to read or write from system memory, it can also send messages directly to the XDR memory controller, or send a signal to the PPE or an SPE instead.
The communication system between elements on the Cell processor is high advanced and planned out and probably constitutes a huge portion, if not most, of the research budget for the Cell processor. It allows for extreme performance and flexibility for whoever develops any kind of software for the Cell processor. There are several new patents IBM has submitted that relate to transfers over the EIB and how they are setup alone. After all, as execution gets faster and faster, the general problem is having memory keeping up to speed.
Note: The section is extremely scaled down and simplified. It is to the point where if you read the Cell BE Handbook, you could say I’m wrong in many places if I implied or suggested that only one method or communication is possible or if you use my literal word choice against theirs. If you are wondering how something would or should be accomplished on the Cell, you’d have to dive deeper into the problem to figure out which method is the best to use. The messaging system between elements on the EIB is extremely complex and detailed in nature and just couldn’t be explained in a compact form.
[size=18][b]Multithreading?[/b][/size]

Threading is simply a word used to describe a sequence of execution. Technically, a single core CPU can handle infinite threads. The issue is that performance drops at a certain point depending on what the individual tasks are doing. The PPE has two threads on the same processor. This makes communication between these two threads easier since they are using the exact same memory resources. Sharing data between these threads is only an issue of using the same variables in code and keeping threads synchronized – much of which has been done and thoroughly studied.
On the other hand, the SPEs are more isolated execution cores that have their own primary memory which is their local store. Sharing data between SPEs and the PPE means putting data on the EIB, which means that one of the messaging methods has to be used to get it there. There are various options for this depending on what needs to be transferred and how both ends are using the data. Needless to say, synchronization between code running on SPEs and the PPE is a harder problem. It is better to think of the code running on separate SPEs as separate programs rather than threads to scale the synchronization and communication issues appropriately.
That being said, it isn’t a problem that hasn’t been seen before as it is pretty much the same as inter-process communication between programs running on an operating system. Each application individually thinks it has exclusive access to the hardware. If it becomes aware of other programs running, it has to consider how to send and receive data from the other application too. The only added considerations on the Cell are the hardware implementation details of the various transfers to maximize performance even of more than one method works.
[size=22][u]Programming Paradigms/Approaches for the Cell:[/u][/size]

Honestly, the most important thing to mention here is that the Cell is not bound to any paradigm. Any developer should assess what the Cell hardware offers, and find a paradigm that will either be executed fastest, or sacrifice speed for ease of development and find a solution that’s just easy to implement. That being said, here are some common paradigms that come up in various sources:
[size=18][b]PPE task management, SPEs task handling:[/b][/size]
This seems to be the most logical to many due to the SPEs being the computational powerhouse inside of the Cell while the PPE is the general purpose core. The keyword is computational which should indicate that the SPEs are good for computing tasks, but not all tasks. Tasks in the general purpose nature would perform better on the PPE since it has a cache and branch prediction hardware – making coding for it much easier without having to control those issues. Limiting the PPE to dictating tasks is stupid if the entire task is general purpose in nature. If the PPE can handle it alone, it should do so and not spend time handing off tasks to other elements. However, if the PPE is overloaded with general purpose tasks to accomplish, or has a need to certain computations which the SPEs are better suited for, it should hand it off to an SPE as the gain in doing so will be worthwhile as opposed to being bogged down running multiple jobs that can be divided up more efficiently.
Having the PPE fill a task manager role may also means that all SPEs report or send its data back to the PPE. This has a negative impact on achievable bandwidth as the EIB doesn’t perform as well when massive amounts of data are all goin to a single destination element inside the Cell. This might not happen if the task the elements are running talk to other elements including external hardware devices, main memory, or other SPEs.
[size=18][b]SPE Chaining:[/b][/size]
This solution is basically using the SPEs in sequence to accomplish steps of a task such as decoding audio/video. Basically, an SPE sucks in data continuously, processes it continuously, and spits it out to the next SPE continuously. The chain can utilize any number of SPEs available and necessary to complete the task. This setup is considered largely due to the EIB on the Cell being able to support massive bandwidth, and the fact that the SPEs can be classified as an array of processors.
This setup doesn’t make sense with everything as dependencies may require that data revisit certain stages more than once and not simply pass through once and be done. Sometimes, due to dependencies a certain amount of data has to be received before processing can actually be completed. Lastly, various elements may not produce output that a strict “next” element needs. Some of it may be needed by one element, and more to another.
[size=18][b]CPU cooking up a storm before throwing it over the wall:[/b][/size]
This honestly was a paradigm I initially thought about independently early into my research on the details of the Cell processor. It’s not really a paradigm, but rather is an approach/thought process. Even the Warhawk designer/producer mentioned an approach like this The Cell is a really powerful chip and can do a lot of computational work that is very fast inside the processor. The problem is bandwidth to other components outside of the chip bring in communication overheads and those bottlenecks as well. It seems like a less optimal use of computing resources if the PPE on the Cell writes output to memory, and all of the SPEs pick up work from there if the PPE can directly send data to the SPEs, removing the bottleneck of them all sharing the 25.6GB/s bandwidth to system memory. It appears to make the most sense to let the Cell load and process the game objects as much as possible, before handing it off to the RSX or writing back to memory.
This approach does make sense, but by no means is a restriction if a game has serious uses and demands for a tight relationship between the RSX or other off chip elements and Cell throughout the game loop.
[size=18][b]Where does the operating system go?[/b][/size]
Some sources propose that an operational SPE will be reserved by Sony for the operating system while games are running. As far as I researched, I have found nothing official to support this being the case with PS3 other than Ken Kutaragi saying an OS could run on an SPE, and IBM’s papers suggesting various Cell operating system configurations.
The specific configuration of running an OS(kernel only) on an SPE makes sense from a security perspective. I will not explain it in this post, but the Cell does have a security architecture which can enable an SPE to be secured through hardware mechanisms. Given this ability, if Sony wanted an easy method to protect its operating system from games and homebrew, then they would probably resort to running a kernel with light OS features in an SPE.

Otherwise, the short answer is that the OS could run as a tiny thread on the PPE, or on an SPE. Sony will do what has the least impact on gaming and still delivers on the functional requirements of the OS.
[size=22][u]The RSX Graphics Chip:[/u][/size]
The RSX specs are largely undefined and unknown at this point, and I will refrain from even analyzing it too deeply if it comes to the clearly unknown aspects. The only information available has been around since E3 2005 and is likely to have changed since then. Various statements have been made after this point that compare the RSX to other graphics chips nVidia has made. Some press sources have used these statements to analyze the RSX as if they actually knew what it was or in a speculative manner, but readers should not forget that they simply do not know for sure. I have read a lot of those sources and am throwing out specific execution speed numbers and am focusing on the more likely final aspects of the RSX specs.
The only thing that can be said with a pretty high degree of certainty is that the RSX will have 256MB of GDDR3 video memory, access to the Cell’s 256MB XDR memory, and a fixed function shader pipeline – meaning dedicated vertex shader pipelines, and dedicated pixel shader pipelines as opposed to a unified shader architecture that the Xenos on the Xbox360 has. The RSX will also be connected to the Cell through the FlexIO interface.
Due to the nature of the SPEs on the Cell, there is quite an overlap in function concerning vertex processors on the RSX. It would be up to the programmer to decide where to accomplish those tasks depending on the flexibility they need, and what resources they have available to them. The Cell could also handle some post processing(pixel) effects if the bandwidth is there and each pass through the RSX is relatively quick to process, but this will most likely not happen due to pixel shading occurring late in the rendering pipeline only for it to be taken out of the pipeline and put back in again.
[size=22][u]What can the PS3 do for gaming? What can’t it do?[/u][/size]

I challenge you to answer that question mostly by yourself. Mostly, but here is my view on it:
To me, it seems as if the Cell is a simulation monster. “Supercomputer on a chip” isn’t entirely far from the truth. If the developers fall into a computational mindset for accomplishing tasks on the Playstation 3, the Cell’s advantage with SIMD and parallelism will be utilized and it could bring some truly impressive physics, graphics, and sound to the table. These things will not be done to the level of accuracy as supercomputers since they are fully dedicated to usually one of those tasks at a time, but the accuracy would be reduced to a realistic enough level for the purposes of game play visuals or mechanics. Basic/static AI routines are probably better done on general purpose processors, but I can see certain routines being developed with a computational approach in mind. I wouldn’t expect any “oh sh*z” from Playstation 3 game AI anytime soon though unless major advancements are made in the field entirely.
It is sad to say that most game play elements that aren’t technically deep and are a breeze to run on processors. Consider that fun games with many varying elements of game play have been available since the 16-bit era or earlier and have only expanded due to features related to external devices like networking and controllers. Don’t expect games to necessary be “more fun” in the game play aspect just because the hardware is more powerful.

Powerful is also by no means a linear term for CPUs. There are difference dimensions of power, and for general purpose code, Intel and AMD processors are still considerably more powerful on the general purpose axis. Comparisons that propose that the Cell may be able to outperform those processors are generally considering where the Cell would pick up slack if a general purpose processor would lag in. General purpose processing is somewhat of a unified axis of everything that has to be done, and anything the Cell does better, technically does raise it on that axis too. Additionally, considerations for the Cell processor being used for general purpose execution also are probably also considering that the developer will put substantial effort in getting general purpose code up to speed on the SPE – this means, they’ll be in control of the cache, they’ll have to manage shared memory, and all that other good stuff no application developer would want to do. Unless tools make general purpose programming for the SPEs acceptable, don’t expect Cell to really step in and take some kind of lead in general purpose computing.
[size=22][u]What can and can’t be upgraded?[/u][/size]

Honestly, many people do not realize how close the lower price point can come up to the more expensive version of the Playstation 3. In short, HDMI is the only real functionality that you’d completely miss if you didn’t get the $600 version. There is reasonable assurance that for the next 4-5 years, ICT wont be turned on which would allow 1080p signals through component video which the $500 dollar version support. As for the other options the $500 version lacks:

USB Compact Flash/SD/Memory Stick Pro Duo readers are sold in computer stores and online shops like newegg.com. They cost anywhere from 10-50 bucks depending on how many formats you want to be able to read. Will the Playstation 3 work with them? There’s a very high chance the PS3 implements standard USB protocols that will allow USB hubs/devices to be connected transparently. The difference is, the memory card device wouldn’t be distinguishable from the viewpoint of the PS3 if it was connected through the USB interface as opposed to the pre-installed version – i.e. it wouldn’t know if it was an SD card, Memory Stick Pro Duo or Compact Flash drive. It would just see “USB Storage Device.”
WiFi can be made up easily by buying a wireless router with Ethernet ports on it. Simply connect the PS3 to the Ethernet and any other devices on the router’s wireless network can be talked to. This would not be transparent to the Playstation 3 due to the more expensive version having two separate network interfaces as opposed to one. If a feature was implemented that only looks for wireless devices to talk to through the wireless network interface attached to the $600 Playstation 3, they wouldn’t find it and never attempt to see if the same device exists on the network the Ethernet network card is connected to. Although if a feature was implemented such that it attempted to communicate with devices through any available network, it would find the Ethernet NIC on the $500 PS3, and attempt to search for devices – wireless or not – through that interface. It’s kind of up in the air if Sony developers will be smart enough to realize this. Sony has also said that purchasing a wireless network interface would allow the PS3 to perform wireless communication to. Doing this would require more work on Sony’s end as they would have to implement drivers for USB network cards.
[size=22][u]Are developers in for a nightmare?[/u][/size]

I would LOL if someone seriously asked me this, but it is a reasonable question that I’m sure people have on their minds.
Some developers would piss in their pants upon looking at the Cell and realizing what they have to do to get it to accomplish certain things. The amount of mathematical, scientific, and computer science talent and knowledge needed to tackle the whole setup of the Playstation 3 is astounding. While there are many things the Cell naturally excels at, some of these problems sets aren’t as obvious and it requires a deeper understanding of the base problem area which may be sound, physics, graphics, and AI just to understand the many ways of possible solving the problem. Then in addition to understand the problem better, the developer must figure out the most efficient way to implement it on the Playstation 3 and have the skills to actually write it in code. This is a very high bar for games programmer.
Other developers wouldn’t piss in their pants and would be confused at what SIMD actually means for them. They might be too stuck in their old ways to see how SIMD processors can drastically increase game performance and only consider the general purpose abilities of the SPEs scoffing at them for not having a cache. If they think want this type of computing power, they would think the PS3 is probably a piece of crap to program for and clearly measure Xbox360 to be superior or closely matched with its 3 cores and much easier to use developement tools.
Undoubtedly, there are developers who don’t already have the knowledge to implement the efficient SIMD solutions to games processing problems. Thankfully the nature of the Playstation 2 Emotion Engine has already been related to SIMD processing as the V0 and V1 units were vector processors which developers had to make good use of to push the system to its limits – and they did. Unlike the days of Playstation 2, they now have an extreme amount of SIMD processing power coming out of the SPEs so there is far more developers can do on the CPU. They could actually render 3D worlds entirely in real time on the Cell alone if they wanted to ignore the RSX. That being said, they wouldn’t do this due to not being able to show much else for the game, and it would waste an entire component in the PS3.
Look for the development studios that pushed the PS2 to its limits to do similar with the Playstation 3. Multiplatform titles are probably not going to do much justice for the Playstation 3’s hardware as the transition between SIMD and non-SIMD processing presents a huge performance gap and they don’t want to alienate either end of the spectrum.
The important thing with technology advancements is certain steps at taken at the right time. Ten years ago, a processor like the Cell would fall flat on its face due to complexity and the industry not supporting games with costs as high as they are for any platform today. But it isn’t ten years ago and game budgets are high. Some of the budgets still aren’t enough to support Playstation 3. Others are. As time goes on and the knowledge is more widespread, developing for the Playstation 3 will be cheaper as more people will have experience working with it.
[size=22][u]The Future for Playstation 3:[/u][/size]

Playstation 3 is a console built with the future in mind. Playstation 1 had a very long life, and Playstation 2 is still going strong. Considering the length of time people will continue to play these consoles, it is important that they are not outdone by future advancements. The best a console can do is look to the horizon to see what’s coming, and that is what Sony is doing with the Playstation 3.
Blu-ray may not be the next generation movie format. If it is, then all the more reason to buy one. If not, the vast space is still there for games should something come up that does motivate the increase the size of games.
HDMI is future proof in the sense that even though the image constraint token(ICT) may not be used until 2010, if it ever comes into play the $600 Playstation 3 can still support it. The fact that it will support the newest HDMI 1.3 spec that TVs don’t even support yet also shows that once these things become mainstream, Playstation 3 will be right there to utilize it.
Gigabit Ethernet may not be commonplace today, but in 2-5 years, I’m positive that gigabit Ethernet home routers (really just switches running IPNAT), will be down to the price of 100mbps routers today. Although the internet will not be moving that fast because of ISP limitations, at least your internal networks will be and LAN features could take advantage of this bandwidth for something like HD video streaming.
WiFi support – if anything does prevent gigabit from becoming widespread, it would be because money was invested in making WiFi cheaper, faster, and more common. In this respect, Playstation 3 is still able to handle it. Although if WiFi becomes the standard for networking and accelerates beyond 54mpbs (802.11g), the Playstation 3 will be left behind as it comes out of the box. As of now, 802.11n is slated for finalization mid 2007 and will run at 540mbps. At least PS3 still has gigabit Ethernet that could connect to an 802.11n wireless router with gigabit Ethernet ports if you wanted to stay on par with this jump. Adding a USB wireless 802.11n wireless card is a feasible attempt at a solution, but given that USB 2.0 runs at 480mbps, there would be a bottleneck.
[size=24][b]Playstation 3 and Xbox360 – Comparing and Contrasting:[/b][/size]
Before I compare and contrast with the Xbox360 hardware, here are some quick facts about the Xbox360 hardware:

[size=22][u]Xbox360 Quick Hardware Summary:[/u][/size]

The Xbox360 has a tri-symmetrical core CPU. Each one of the cores is based on the POWER architecture like the PPE inside the Cell, and is clocked at 3.2GHz. Each core has 32kb L1 instruction and 32kb LI data cache, and has a 1MB shared L2 cache. Each chip also sports an enhanced version of the VMX-128 instruction set and execution units. This enhanced version expands the register file from 32 128-bit registers, to a pair of 128 128-bit registers – with one execution unit per core. Each of these cores can also dual-issue instruction and handles two hardware threads, bringing the Xbox360 thread total to 6 hardware threads. The CPU and GPU share 512MB of GDDR3 RAM. Xbox360’s GPU, codenamed “Xenos” is designed by ATI and sports 48 shader pipelines using a unified shader architecture. The Xbox360 GPU also has 10MB of eDRAM for the frame buffer and over 200GB/s of bandwidth between this eDRAM and a simple logic uni, for a limited set of 3D processing effects such as anti-aliasing and z-buffering.
The system sports a DVD9 optical media drive from which games are loaded, a controller with rumble features, and 100mbps Ethernet.
[size=18][b]General Architecture Differences:[/b][/size]
One thing I think is important when looking at CPU architecture is visuals. In the world of computing, physical distance between parts of a computer system generally corresponds with the speed (latency-wise) of their communication. Also a diagram shows the flow of memory, outlining where bottlenecks might exist for certain components to access large amounts of data from specific areas of memory.
Here are two diagrams of the major components on the Xbox360 motherboard:
[img]http://www.csh.rit.edu/~oguns/ps3/imgs/XBoxDiagram.jpg[/img]
[img]http://www.csh.rit.edu/~oguns/ps3/imgs/ XBoxDiagram2.jpg[/img]

[img]http://www.csh.rit.edu/~oguns/ps3/imgs/xbox-arch.gif[/img]
Here are two diagrams of the Xenon CPU:
[img]http://www.csh.rit.edu/~oguns/ps3/imgs/Xenon_Arch.png[/img]

[img]http://www.csh.rit.edu/~oguns/ps3/imgs/Xenon_Arch2.gif[/img]
Comparably it is harder to find verbose diagrams of PS3 hardware but here is one I found on AnandTech:
[img]http://www.csh.rit.edu/~oguns/ps3/imgs/RSX_Cell_Arch.jpg[/img]

This diagram has a likely discrepancy relating southbridge (I/O) being connected through the RSX. It is likely the southbridge will connect to the Cell directly via Flex I/O given the large bandwidth available through the interface and the GPU not being a recipient of I/O.
[img]http://www.csh.rit.edu/~oguns/ps3/imgs/ps3-arch.gif[/img]
There are plenty of other Cell diagrams on the internet and here are two of them:

[img]http://www.csh.rit.edu/~oguns/ps3/imgs/Cell_Arch.gif[/img]

[img]http://www.csh.rit.edu/~oguns/ps3/imgs/cell-arch.png[/img]
[size=18][b]Bandwidth Assessment:[/b][/size]
I recall an article IGN released short after or during E3 2005 comparing Playstation 3 and Xbox360. Microsoft analyzed their total system bandwidth in the Xbox360 and came up with some outrageous numbers compared to the Playstation 3. One of the big reasons for this total number being higher is the 256GB/s bandwidth between the daughter die and parent die in the Xenos(graphics chip). I will explain the use of the eDRAM memory later, but it is important to know that the logic performed between those two components with 256GB/s bandwidth hardly constitutes a system component where considering game processing takes place. Additionally, Microsoft added up bandwidths that weren’t relevant to major component destinations such as “to CPU” or “to GPU.” Context like that matters a lot, because bandwidth between any two elements is only as fast as the slowest memory bus in-between. The only bandwidth figures that make sense to add together are those on separate buses to the end destination.
The biggest ugly (and this really is a big one) in the Xbox360 diagram should be the location of the CPU relative to the main system memory. It has to be accessed through the GPU’s memory controller. The Xbox360 GPU’s memory has 22.4GB/s bandwidth to the system’s unified memory, and this bandwidth is split between the GPU’s needs and the CPU’s. A simple investigation would show that if the Xenon(Xbox360 CPU) was using its full 21.6GB/s bandwidth to system memory, there would be 800MB/s left for the GPU. If the GPU was using it’s full bandwidth to this memory, none would be left for anything else. Additionally, the southbridge(I/O devices) is connected through the GPU also, and all of these devices are actually destined to go to the CPU unless sound for the Xbox360 is done on the Xenos. The impact of this is considerably less since I/O devices probably won’t exceed more than a few hundred MB/s during a game, and isn’t shared by GPUs 22.4GB/s access to main memory. This bandwidth is still going through the same bus that the CPU uses to access RAM though.
Looking at the diagram of the Playstation 3, you can see that the RSX has a dedicated 22.4 GB/s to its video memory, and the Cell has a dedicated 25.6GB/s to its main memory. Additionally, if you wanted to find the bandwidth the RSX could use from the Cell’s main memory, it go through the 35GB/s link between the Cell and itself, and then go through the Cell processor’s FlexIO controller, on the EIB, to the Cells memory controller which is the gatekeeper to RAM. The slowest link in the line is the bandwidth the XDR memory controller provides which is 25.6GB/s. If the RSX uses this extra bandwidth it is being shared with the Cell. In general though, the major components in the Playstation 3 have their own memory to work with which provides maximum bandwidth.
In terms of peak performance, if both the GPU and CPU for both consoles were pushing the maximum bandwidths from their respective memory banks, the total for Xbox360 would be 22.4GB/s, and the total for the Playstation 3 would be 48GB/s. I believe this to be the most important bandwidth measure as both of these elements are the major programmable elements of a gaming machine. They will be processing game data or graphics data independently, and need fast access and high bandwidth to what they are working on.
While the Xbox360 shared bandwidth is a big downside on the grand scheme of things considering potential, Microsoft probably allowed this due to the nature of a game loops often not involving both the CPU and GPU needing high bandwidth simultaneously. Overall, during a game loop, Xbox360 will probably use its 22.4GB/s bandwidth almost constantly due to the CPU using it heavily for a part of the game loop, and the GPU using extreme bandwidth during another part of the game loop. While a Playstation 3 game, if it uses a typical game loop design, would show half of the frame time, the CPU is using high bandwidth to its memory, the other half being mostly unused; and the same thing for the GPU’s use of video RAM. That isn’t a disadvantage of the Playstation 3’s part, but it is a lack of using its full potential. A modified game loop that kept both rendering and CPU processing high would fare far better on the Playstation 3’s bandwidth and design than the Xbox360.

In the worst case scenario for the Playstation 3, if the GPU literally only used bandwidth for half of the game loop, overtime, you could consider it’s bandwidth to be half of its peak. Same thing applied to the Cell and XDR RAM would yield 12.8GB/s bandwidth if it only used XDR half of the time. Although Playstaiton 3 not to be outdone - if the situation of a game loop is like this, the RSX might as well take the XDR RAM bandwidth while the CPU is idling and increase its total bandwidth to 48GB/s.
[size=18][b]Xbox360 “Xenon” compared to Playstation 3’s “Cell” – the CPUs:[/b][/size]

[size=16][u]Inter-core communication speed:[/u][/size]
Another mystery with the Xbox360 (at least in my view) exists with the inter-core communication on the Xenos CPU between its cores. IBM clearly documents the Cell’s inter-core communication mechanism physically and how it is implemented in hardware and software. This bandwidth needs to be extremely high if separate cores need to communicate and share data effectively. The EIB on the Cell is documented at a peak performance of 204GB/s with an observed rate at 197GB/s. The major factor that affects this rate is the direction, source, and destination of data flow between the SPE and PPEs on the Cell. I tried to find out the equivalent piece of hardware inside the Xenon CPU and haven’t found a direct answer.

Looking at the second architectural diagram of the Xenon, it seems that the fastest method the cores can use to talk to each other is through the L2 cache. Granted, the Xenon only has 3 cores, game modules are usually highly dependent and will need to talk to each other frequently. I might be a jumping the gun a bit, but given the L2 cache and FSB are running at half of the core speed, as opposed to the Playstation 3’s EIB which runs at the same clock speed as the cores, I’m pretty positive using L2 cache to communicate is not going to be very fast. It seems that independent threads are really what Microsoft was aiming for with the Xbox360 CPU design, and games are not optimally implemented if they have massive streaming transfers to hand off to other cores. What would suggest that the Xbox360 cores can communicate quickly and with high bandwidth, would be evidence that the reading and writing to the L2 cache are in larger segments than the writes to the EIB, compensating for the lower clock speed. Additionally, just writing to memory isn’t enough as the receiver needs some sort of notification that it has new data unless it is a permanent buffer. If anyone wants to do research on the topic, please add it to the discussion and include links to your sources.

[size=16][u]Enhanced VMX-128 instruction set:[/u][/size]

This is one of the features Microsoft boasts to claim they have a better gaming machine than Sony. They focus on the fact that their enhancements support a single cycle dot product instruction, and the larger register file. The problem with this boast over the Playstation 3 is that it compares it to the PPE’s VMX-128 unit which comparably only has 1 set of 32 128-bit registers and presumably less instructions. If the code requires 128 128-bit registers, or more complex instructions, then the code is most definitely vector processing heavy and should be run on an SPE which sports the exact same register file size, and includes a superset of the VMX instructions in terms of functionality(it is not a superset in terms of being binary compatible).
While each core in the Xbox360 also has two VMX-128 register sets, this is done to support the dual threaded nature of the cores better. It doesn’t actually have two vector execution units. Each core only has one VMX-128 execution unit meaning that even though there are two sets of registers per core, two threads that are using vector code have to share this single execution unit.

Comparably, the Cell’s PPE has the limited 32 128-bit register file with a single VMX vector unit on the PPE. This is what Microsoft usually singles out when they compare Playstation 3 to the Xbox360’s CPU. They forget(purposefully) that the Cell has 7 SPEs running at 3.2 GHZ, which is far greater SIMD performance than their 3 enhanced VMX-128 execution units. For vector based computations, the Playstation 3 undeniably outdoes the Xbox360 by an order of magnitude.
The dot product instruction claim is matched at least on the SPEs on the Playstation 3 though a simple multiply-add instruction. For those of you that aren’t mathematically inclined, a dot product is basically a measure of how parallel or perpendicular two lines are. The calculation of a dot product is basically multiplying each corresponding dimension value together, and then taking those products and adding them all together. Take two vectors <2, 3, 4> and <6, 7, 8>. The dot product would be: 2*6 + 3*7 + 4*8 = 65. If you read the earlier section in this post covering the SPES and SIMD architectures, you should remember that at the very least, an SPE can do all of the multiplying in one cycle, and all that needs to be done is a follow up add between the elements in the result vector. I do know that the SPEs have a few multiply-add instructions, but the bit of haziness is if the multiply can be an intra-vector(between two separate vectors) operation, while the add instruction is an inter-vector(between elements in the same vector) instruction from the result of the multiply. Sony claims that the dot product can be done in one cycle on an SPE, and it is very reasonable that this is the case as there are vector permute/shuffles/shift instructions in the SPE instruction set. There just isn’t a labeled dot product instruction in the SPE instruction set – but an intelligent programmer should find what he needs.
[i]I found the multiply-add instruction in the Cell BE Handbook. It takes 4 vectors, one is definitely the result vector and two are operands, but the third parameter named ‘rc’, which I think represents a control register that dictates how to perform inter and intra vector operations. That means the multiply-add instruction has to operate on only two vectors, and the control vector is able to dictate an add between the result components of the multiply.[/i]
[size=16][u]Symmetrical Cores?:[/u][/size]

Symmetrical cores means identical cores. The appeal to this setup is entirely for developers. It represents no actual horsepower advantage over asymmetric cores since code running on any of the cores, will run exactly the same as it would run if it were on another core. Relocating code to different cores has absolutely no performance gain or loss unless it means something with respect to how the 3 cores talk to each other. It should be noted though, that thread relocation does matter between the cores, as a thread might not co-exist well with another thread that is trying to use the same hardware that isn’t duplicated on the core. In that case, the thread would be better located on a core that has that execution resource free or less used. The only case of this I can think of is the VMX-128 execution unit. I think most other hardware is duplicated on the cores in the 360 to allow for two threads to co-exist with almost no problem.
The Cell chip has asymmetrical cores, which means they are not all identical. That being said, the SPEs are all symmetrical with each other and the code that runs on an SPE could be relocated to any other SPE in the Cell. While the execution speed local to the SPEs are the same, there are performance issues related to the bandwidth the SPE is using and who it’s talking to on the EIB. Developers should look at where their SPE code is executing to ensure optimal bandwidth is being observed on the EIB, but once they find an optimal location to execute the code on, they can just put it there without rewriting anything. If a task was running on the PPE or PPE’s VMX unit, then it would have to be recompiled with C, and probably rewritten if hardware specific instructions are in the code(C or ASM) before it moves to an SPE, and the same applies in reverse. Good design and architecture should immediately let developers know what should run on the PPE and what should run on the SPEs, eliminating the chance of rewriting code if they see something better fit to run on an SPE later in development.
[size=16][u]Is general purpose needed?:[/u][/size]

Another one of Microsoft’s claims for the Xbox360’s superiority in gaming is the general purpose processing advantage since they have 3 general purpose cores instead of 1.
To say “most of the code is general purpose” probably refers to code size, not execution time. First, it should be clarified that “general purpose code” is only a label for the garden variety of instructions that may be given to hardware. On the hardware end, this code fits into various classifications such as arithmetic, load/store, SIMD, floating point, and possibly more. General purpose applications are programs made up of general purpose code on the scale that one function might be arithmetically heavy, and another might be memory bound. Good examples of this are MS Word, a web browser, or an entire operating system. With MS Word there is a lot of string processing which involves some arithmetic, comparison, a lot of branching, and memory operations. When you click import or export and save to various file formats, it is an I/O heavy operation. Applications like these tend to not execute the same code over an over, and have many different functions that can occur on relatively a small set of data depending on what the user does. These functions can vary from being very I/O device bound (saving to disk), to string processing intensive (spelling/grammar check), to floating point intensive(embedded Flash media game or resizing an image). Ultimately, there is a large amount of code written to handle the small set of data and most of it never gets executed.
Games are not general purpose programs. Any basic game programming book will introduce you to the concept of a game loop. This loop contains all of the functionality a game performs each frame. This loop handles all of the events that can occur in the game. An important principle in a game loop is to avoid branches when unnecessary as it slows down execution and makes the code on screen extremely and unnecessarily long. A good example of this is the Cohen-Sutherland line clipping algorithm. Instead of writing lengthy and complicated branches to check the 9 regions a point lies in, the code performs 4 simpler checks, and computes a region code which can be easily be used.
This automatic and repetitive processing has to occur for many game objects which represents a massive amount of data, with a relatively small code size. This is opposite of the general purpose paradigm, which typically has a small set of data (word document or html) and performs many various functions on it representing a large code size. Games processing has a large data size, but much smaller code size. Game objects also tend to be very parallel in nature as game objects are typically independent until they interact (collision) – which means they can be processed well on SIMD architectures if they are well thought out..
The whole integer advantage claim for the Xbox360 CPU is pretty stupid considering the SIMD architectures can operate on 4 32-bit integers at the same time, and integer processing abilities of games are not the bottleneck of 3D games processing.
What this general purpose power does grant Xbox360 owners over Playstation 3 is the ability to run general purpose applications faster. If the Xbox360 had a web browser(official or not), the design for such an application would work better on a general purpose CPU(s). That being said, it’s too bad Xbox360 doesn’t come with one, and web browsers don’t put the highest demand on general purpose processors to begin with. Most general purpose applications remain idle until the user gives actually input. The application will then process the task and complete before sitting idle again.
AI routines that navigate through large game trees are probably another area where general purpose processing power might be better utilized since this code tends to be more branch laden and varying depending on the task the AI is actually trying to accomplish. The plus side for the Playstation 3 is generating of these game trees, which is also time consuming. Generating a game tree is a more computational oriented task, and is likely to be executed faster by SIMD architectures. I am largely speaking speculatively under my Computer Science knowledge in this area. Anyone who knows more or has done more research on AI algorithms is welcome to add to discussion in this area.
The only case I can really see the general purpose computing power of the Xbox360 cores manifesting itself as a true advantage over the Playstation 3, is if Windows or similar OS was put on an Xbox360, having multiple applications running simultaneously along with some background services. Again, it is funny that Playstation 3 is more likely to have a general purpose operating system running on it than Xbox360 even though it would perform worse doing such a task.
[size=16][u]XDR vs GDDR3 – System Memory Latency:[/u][/size]

XDR stands for eXtreme Data Rate while GDDR3 stands for Graphics Double Data Rate version 3. XDR RAM is a new next generation RAM technology from those old folks at Rambus, who brought out that extremely high bandwidth RDRAM back during the onset of Pentium 4 processors. DDR was released soon after and offered comparable bandwidth at a much lower cost. RDRAM also had increased latency, higher cost, and a few other drawbacks which ultimately led to it being dropped very quickly by Intel back when it was released. Take note that DDR RAM is not the same as GDDR RAM.
Anyways, it was hard to make a good assessment on what the exact nature of the performance difference between these two RAM architectures are, but from what I gathered, GDDR3 is primarily meant to serve GPUS which means bandwidth is the goal of the architecture, at the cost of increased latency. For GPUs this is accepatable since, large streaming chunks of data are being worked on instead of small random accesses. In the case of CPU main memory, when more general purpose tasks are being performed, latency has increased importance on memory access times because data will be accessed at random more frequently than a GPU would.
That being said, the Xbox360’s CPUs bandwidth to RAM tops out at 21.6GB/s while the Cell processor still has more bandwidth to its RAM at 25.6GB/s. XDR RAM also does this without incurring high latency, and I’m almost positive its latency is lower than GDDR3 which is considered to actually have high latency. Games are not going to be performing a lot of general purpose tasks so the latency advantage for the Playstation 3 might not be that large, but the CPU will be performing more random accesses to memory regardless. The Xbox360’s CPU latency may be made worse than the already inherent GDDR3 latency issues due to being separated by the GPU.

[size=18][b]Xbox360 “Xenos” compared to Playstation 3’s “RSX” – the GPUs:[/b][/size]

Since the specs on the RSX are not fully known, I’ll only make comparisons on the solid aspects of the RSX that are unlikely to change from what Sony has reported at E3 2005 (unless they change for the better).
[size=16][u]Unified Shaders vs Fixed Function Pipelined Shaders – the GPUs:[/u][/size]

The general move to unified shaders was done after examining the hardware differences between the vertex and pixel shader pipelines. There was enough duplicate and similar hardware that unified shaders were favored and the pipeline differences were consolidated into one and the number of total pipelines increased.

The general trend/nature of computing hardware is that the more variety of code types the hardware had to handle, the more complex it gets in hardware, and it will run slower. This remains true with the pipelines of the RSX compared to the pipelines in the Xenos. A pixel shader pipeline in the RSX, at a one to one ratio with the abstract pipeline in the Xenos would perform faster, and the same thing in respect to the vertex shader pipeline. How much faster are the RSX fixed function pipelines individually when compared to a single pipline in the Xenos performing a specific task? I really don’t know and it depends on what that is to say which card has more shader horsepower.
It should also be noted that ATI’s current highest end video card, still sports a fixed function pipeline. This strongly suggests that unified shaders are not the way to go.
[size=16][u]Xenos’ eDRAM:[/u][/size]

On the Xbox360’s GPU, there are 10MB of eDRAM which provides an assortment “free” frame buffer effects such as anti-aliasing, alpha blending, and z-buffering. This daughter die is connected to the parent die with 32gb/s bandwidth, and has 256GB/s bandwidth between the eDRAM and the logic to perform the aforementioned operations. These operations are considered “free” with respect to bandwidth since they are performed by hardware and memory that isn’t shared by the rest of the GPU or CPU.
The exact nature of the AA advantage is 4xMSAA or 2xFSAA at 720p. Any larger or higher of a resolution and the 10 megabytes become insufficient to accomplish these tasks. The basic premise is that any operations that require a frame buffer of over 10MBs will make this eDRAM unavailable unless a tiling method is used for rendering. Examples of typical methods that increase are HDR(certain types)
The RSX doesn’t have anything to compare to this free bandwidth for anti-aliasing and other effects, but I don’t think Playstation 3 fans have to worry too much for a few reasons. First, even PC cards don’t sport eDRAM and AA still accomplished even with other effects enabled. Additionally, games can step up to 1080p on the Playstation 3 to lower the need for anti-aliasing. Lastly, this eDRAM is probably in the Xenos as a necessity rather than luxury, since the main memory bandwidth between the GPU and CPU on the Xbox360 is shared. The RSX and standard PC cards have dedicated bandwidth to video memory, which is definitely where the frame buffer resides.
[size=16][u]The Cell Advantage:[/u][/size]

The Cell will not, and should not be performing all rendering operations like the E3 2005 demos displayed. It should prove as very interesting that the Cell does perform well at those types of operations since rendering on a CPU offers more flexibility than vertex and pixel shader programs. It is unlikely the Cell would be processing the latter type of shader operation since it would involve the RSX processing an almost finished frame, before giving it up to the Cell, only for the Cell to send it back to continue down the graphics pipeline again with almost no work to be done.
Granted, 3D pipelines are configurable and you can speed up processing through it by disabling unnecessary features that you might have already accomplished on the CPU already. It is likely that developers will do some basic/macro level 3D operations on geometry before passing it off to the RSX to do more time consuming fine detailed processing.
The Xbox360 CPU could do the same thing too and aid in rendering task, but general purpose computing power doesn’t exactly lend itself well to the types of operations it would have to perform, and the vector processing capabilities of the Cell greatly out perform the Xenon in this respect.
[size=18][b]Other Peripherals:[/b][/size]

[size=16][u]Hard Disc Drive:[/u][/size]

In the case of the Xbox360, a 20GB hard drive is included in the premium version, and it is an upgradeable feature in the core version. Playstation 3 offers a 20GB hard drive on its “core” version, and a 60GB hard drive on its premium version. Advantages of a hard drive are generally well known to anyone who has a PC and has ever played a game for it. Both systems having a hard drive considered, there is nothing much to speak of except for the fact that you can get a bigger hard drive for the Playstation 3 if you are a person looking to store and playback larger amounts of media. It is likely both Microsoft and Sony will provide upgrades in the future.
The issue here is the fact that the hard drive is non-standard on the Xbox360. Some people get really defensive when this comes up. It is an issue that will and should be brought up since with the Xbox360 developers may not develop a hard drive feature they don’t feel enough consumers will see and enjoy. With the Playstation 3, developers know every consumer will have a hard drive and see the benefits of the feature they implemented.
It isn’t quite clear at this point though whether or not Sony is using a standard 2.5” SATA drive. If they are, then you could upgrade a PS3 hard drive as soon as any consumer SATA drive is released.
[size=16][u]Optical Media Drive:[/u][/size]

You know it was going to come up – Blue Ray vs DVD9. This isn’t really a fair versus. Blue-ray is superior to DVD9 in every respect. The only disadvantage Playstation 3 has in this respect is data reading speed. The 2x BD read speed is considerably slower than the 12x DVD read speed. The difference is between 72mbps vs ~130mbps, which in terms of common data rates known in the computer world are 8.6MB/s and 15.4MB/s. Should PS3 fans worry about their load times? I don’t think so as this is still higher than Playstation 2’s read speed, and since the hard drive is standard on Playstation 3, this will be large motivation for developers to use hard drive caching methods as a standard – not merely as feature.
The clear advantage of blu-ray is capacity and the possibility of playing the next generation standard for HD movie content. Blu-ray is looking good for becoming the next generation standard for movies as Hollywood has far more support for Blu-Ray than HD-DVD. If movie fans go where the movies are (which they will), then it will be blu-ray decisively. Playstation 3 is playing a part in getting consumers to match up with the studios by sporting a blu-ray player. Playstation 3 will probably be the majority of blu-ray player sales this year, and may even continue in 2007. That being said, it isn’t set in stone just yet so don’t hold your breath…
Capacity for games is where the bigger debate still exists with blu-ray and DVD9 with respect to the console wars. Will blu-ray be needed for this next generation? I can’t say it will be needed by any genre except any games that will decide to include HD FMV sequences on the media. But that is under the current way things are looking now. In a few years, or 5 years, that could all change and the space for blu-ray media is needed or wanted. Right now, you can’t make too strong of an argument for blu-ray being needed for the capacity of games, but it is an advantage.
[size=16][u]Controllers:[/u][/size]

Both consoles now sport pretty much the exact same button layout. All “who copied who”s aside, Playstation 3’s controller has motion sensitivity for better primary control in some game types, and a very large possibility to improve secondary control in all genres (i.e. tilting head around corners in an FPS, cameras, etc). Xbox360 has rumble feedback which was much enjoyed last generation, and PS3 fans will miss if it doesn’t come back (which it likely wont). Another significant difference is the pressure sensitivity of the face buttons. Playstation 2 had this, and Playstation 3 is most definitely going to include the same (it’s impossible to find out if it really is there or not). Xbox360, surprisingly, doesn’t do this even though the original Xbox controller did. Functionally, the major difference is merely that PS3’s controller has motion sensing.
Xbox360’s supports 4 RF(radio frequency) wireless controllers. Playstation 3 supports up to 7 wireless Bluetooth devices – not the keyword “device” as it means Sony isn’t limiting it to only controllers. Bluetooth notably has a shorter battery life due to its increased bandwidth capability although this shouldn’t be an issue as Sony’s controller doesn’t appears to be using a built in rechargeable battery which charges through USB. Looking at the player number support, Playstation 3 has jumped to the lead over all other consoles this generation out of the box. Will you do 7 player multiplayer? Probably not split screen, 4 players is a comfortable maximum there, but for multiplayer games where the screen is shared and all players are on the same screen, 7 players is definitely feasible.
[size=16][u]Bluetooth:[/u][/size]

In reference to the last section – Playstation 3’s “Bluetooth” support is labeled with the words “device” and is not limited to controllers. This means that the Playstation 3 could utilize other Bluetooth devices on the market such as mice and keyboards. It essentially means that USB is not the only interface to the console anymore, and Bluetooth is also available if a developer wants to release an accessory paired with a game that has to be wireless.
[size=18][u]The Final Verdict?:[/u][/size]

To no surprise, the Playstation 3 really does have a considerable lead when it comes to games processing power. Despite Microsoft’s claims of the Xbox360 having more bandwidth, the evaluation brings in play numbers that make no sense to add up in the context of the “system” and throws in numbers which also shouldn’t be added together due to the buses being connected in series. Vector/SIMD/stream processing is very relevant and needed in games programming to achieve a lot of high end calculations that occur in games today.

Consider why a number of PC games in the past year or two have been tapping into the GPU hardware to get it to accomplish a few things. Consider why research has supported that GPUs are much faster than CPUs at performing many tasks that people though desktop CPUs dominated in. Consider why Ageia is proposing a new major piece of hardware on PCs to aid in processing physics in games. The answer is clear that a certain type of processing is needed, and it is not found in traditional desktop CPUs with general purpose processing power. If this post isn’t enough, you can go out and do research on the various topics yourself.
[size=24][b]Playstation 3 and PC – Comparing and Contrasting:[/b][/size]
Unlike consoles PCs are not static and evolve over time – or rather, the components of a PC evolve over time. In the case of a PC, CPUs and GPUs are the fastest evolving parts of it and also are the most important aspects of games processing. The downside to a PC is that is not purely a gaming platform and the CPUs are more general purpose in nature to handle code coming from an operating system running many applications at once. It has to perform integer math, floating point math, memory loading and storing, and branching all at an acceptable level of performance such that no area noticeably slows down processing. The other downsize to PCs is that motherboards do not advance as rapidly and they represent some significant bottlenecks for PC games today. Here is a quick rundown of what is inside of a PC as it relates to game processing.
[size=22][u]PC Architecture Summary:[/u][/size]
[size=18][b]PC Motherboard – AGP/PCI-E:[/b][/size]
Motherboards dictate a baseline functionality limits you can get out of a PC. A motherboard is where you connect your CPU to the GPU, RAM, and other peripherals that connect to your PC. Because this is where you connect these components, it effectively sets the rate at which these parts can talk to the CPU at. If a motherboard uses AGP 4x, an AGP 8x card will be capped to communicating with the CPU at 4x speeds and the same goes to PCI-express.
To put some numbers on the speeds of these buses, AGP 8x runs at roughly 2GB/s peak bandwidth, and PCI-E runs around the same speed at 8x. PCI-E is however being upped to 16x which puts this speed at 4GB/s. If the graphics card and motherboard PCI-E or AGP speeds differ, the max bandwidth that can be obtained is the lower of the two speeds.
[size=18][b]PC Motherboard – RAM:[/b][/size]

PCs today typically use DDR ram at varying clock speeds. The fastest variant of DDR RAM is DDR400 which runs at around 4GB/s in single channel mode, and 8.5GB/s in dual channel. DDR offers very low latency access to RAM.
[size=18][b]PC Graphics Cards::[/b][/size]

Graphics cards are probably the single most important factor in determining the visual performance of games on this platform. PC games are typically the first to show the latest and greatest rendering methods and pushing certain features to the max due to hardware improvements that consumers can buy at a rate at which they please, and developers are free to use these expanded hardware features as they are released.
PC graphics cards also come with on-board memory so the graphics cards don’t have to go through the slow AGP or PCI bus. PC graphics cards typically offer very high bandwidth to video ram since they also are in charge of building the link between the video ram and the actual GPU.
[size=18][b]Bandwidth Assessment:[/b][/size]

If there was a diagram showing PC motherboards compared to the bandwidth diagram of the Playstation 3, you might be shocked to see some of the narrow bandwidths provided in PCs, but you’d also notice that the bandwidth provided in top end graphics cards today are already around double the reported bandwidth for the RSX. A top end GeForce or Radeon card has around 50GB/s bandwidth between the GPU and its video ram, while the RSX only has 22.4 GB/s. This factors in greatly with the texture detail displayed on PC games as compared to those in console games.
Comparably, the AGP/PCI-E bus for CPU to graphics card (memory or GPU) communication is extremely low at 4GB/s on the top end. The Playstaiton 3 sports a link of 35GB/s bandwidth between its CPU and GPU alone to allow them to work together to accomplish tasks without going through a huge bandwidth bottleneck.
PC CPUs also have much lower bandwidth to RAM compared to the Playstation 3. Today the fastest(common) RAM on desktop PCs runs at 4GB/s, and a gaming rig might try to setup dual channel upping this bandwidth to 8GB/s. On the PC end this bandwidth is so low due to the fact that general purpose computing generally doesn’t have a demand to transfer or process massive chunks of data at such a fast rate. For PC games, this does put a huge limitation on games that might want to process massive amounts of data on the CPU.
[size=18][b]CPU performance:[/b][/size]

On that note, CPUs on PCs are general purpose CPUs. Generally they are x86 based and are scalar processors – meaning they execute one operation at a time (on a single pipeline per core) on one piece of data. General purpose CPUs have gotten extremely fast at executing instructions, but this improvement has not been kept up with by memory(RAM). Due to this, a large part of die space is taken up by hardware aimed to hide general purpose CPU access time dissipating a lot of heat and lowering the overall efficiency of the CPU to keep it running fast. This hardware is needed in the general purpose computing scene since random accesses to memory are frequent between application switching, and even within general purpose applications with many vary functions. This need however, is not needed as much for games and the extra hardware would be a much greater waste of space and power. I already mentioned the lack of need for general purpose computing power in the Xbox360 contrasting so I wont mention it again.
Intel/AMD are the primary manufacturers of desktop CPUs today and all have huge amounts of die space allocated to general purpose computing. However, to not be [i]completely[/i] outdone by the world of SIMD processing, MMX, 3DNow!, and SSE technologies were added to these general purpose CPUs to improve their 3D gaming and multimedia functions. These SIMD functions are still behind even the single VMX-128 instruction set and hardware included in the Cell’s PPE as they only have 16 registers as opposed to 32. SSE only recently supported operations that apply between elements in the same vector register with the latest version SSE3, although 3DNow! had this functionality from the start. MMX and 3DNow! also shared registers with the x86 floating architecture which meant they couldn’t be executed simultaneously with x86 floating point code(x87).
That’s not even beginning to mention to how the SPEs on the Playstation 3 completely outdo these technologies and the Cell having 7 of them in addition to the VMX-128 instruction set. For games processing, Intel/AMD CPUs are vastly outdone, and they will not be catching up this generation or the next. Buying newer and newer CPUs will not increase PC gaming performance drastically, and they won’t be catching up to the Cell for a long time.

[size=18][b]Graphics performance:[/b][/size]

In purely assessing the graphics cards compared the RSX, the RSX likely doesn’t weigh in as a heavy of a hitter. As I said before in the bandwidth assessment, graphics cards have extremely high bandwidth between video RAM and the graphics rendering pipelines that make up the GPU. The bandwidth and processing capability in graphics chips increases as quickly as new cards are released on the market which is about 3-4 per year, and a new generation every year. Consoles are quickly outdone in the eyes of PC game developers in the graphics card department. When you see the latest top-end PC game, remember that it’s running on the latest top-end graphics card, and in some cases, these games are targeting cards that aren’t going to run well until the next generation of graphics cards is released.

The “Cell factor” added into graphics processing should also be considered in boosting the visuals of Playstation 3’s graphics when compared to PC games. Unlike a desktop PC, the Cell is actually equipped to process many of the tasks that are performed on a graphics card, and there is enough bandwidth to the Cell’s RAM, and enough bandwidth to between the Cell and RSX to accomplish this. The most obvious approach to getting more out of the Cell is using it to do hardware transform and lighting (T&L), and other basic vertex operations that a vertex shader might do. Upon entering the geometry to the GPU, you disable these rendering steps since they have been performed already and it goes through the GPU’s rendering pipeline quicker, giving it more time to accomplish something like pixel shading tasks, AA, or HDR. There is actually feasible bandwidth for pixel shader operations to be done on the Cell before it is handed back to the RSX to do nothing but move it to the frame buffer and send the output signal to the display.
How much processing can be done on the Cell to make up for the PC graphics card advantage? I can’t answer that well since GPU specs and statistics are told in results with little introspection as to what hardware does what, and how. If anyone knows a bit more about this, it would be a good area to get into deeper discussion with. I am pretty confident that the Playstation 3 with the Cell + RSX working together can look on par with many PC games that will be released in 2007.
One thing that the Playstation 3 developers couldn’t easily make up for is the bandwidth limitations of the RSX. No matter what, the RSX is limited to its 22.4GB/s link to GDDR3 RAM which limits the rate large textures can be rendered, which couldn’t be made up by Cell’s processing power. The wildcard in this scenario is obvious if you look at the RSX/Cell diagram and remember that RSX has full access to the Cell’s 256 MB/s of XDR RAM. The channel would first have to go through the Cell’s 25.6GB/s link to RAM, then the Cell/RSX link at 35GB/s – limiting bandwidth being the 25.6GB/s. If this RAM could be used simultaneously with the GDDR3 RAM, then the total peak bandwidth with memory that the RSX can use is 48GB/s through two buses, which is still on par with top end graphics cards today.* Do note that this scenario drains the Cell of all bandwidth to XDR RAM. This could be a non-issue by the nature of a game loop since the CPU is less likely to need such high bandwidth to RAM during rendering stage of a game loop.
Even if the 48GB/s bandwidth on the RSX is on par with top end PC cards today such as the GeForce 7900GTX or the ATI X1900 XTX, that number is static. Next year graphics cards could (and likely will) be sporting bandwidth figures in excess of 70-80GB/s.** They will push larger and more detailed textures faster than what 48GB/s can do, and probably include execution speeds that the Cell’s processing will not be able make up for.
[i]*In a press interview with the Heavenly Sword developer(Ninja Theory) a few weeks ago, this idea was hinted on. I believe a developer said something about the RSX having two buses to memory and not just one. This very well could be what he was referring to without getting into the details.[/i]
[i]**After I wrote that, I looked up the bandwidth on the GeForce 7950GX2 and see that it has 76.5GB/s bandwidth to video RAM. Next year’s bandwidth for top end PC graphics cards are looking to get up to 150GB/s or more bandwidth at this rate.[/i]

[size=18][b]Frame-rate:[/b][/size]

Frame rates vary for a number of reasons. It actually factors in considerably in the visual department because smoother frame rates just looks better. While 30 FPS is well-playable, 60 FPS at the same visual quality will just make the game feel much better.

The reason why I mention this here is that PC games typically showcase very ugly frame rate variation. Unless your PC is far beyond the requirements of a game, you will probably notice that most games have frame rates dropping to around 10-15 on certain parts, and going up to 30 or more during others. I’m not completely blaming this on developers since they have a lot of different hardware to worry about, but it is something that degrades the overall pleasure of playing a game. Playstation and Nintendo (sorry, Xbox360 and original have shown some awfully ugly frame rate drops similar to those seen on PCs), have historically shown games with less frame rate variation.
[size=18][b]Controllers:[/b][/size]

Mouse and Keyboard vs Playstation 3 controller. When it comes to RTS and FPS games, then Playstation 3 is owned along with every other console. Playing these types of games on the highest multiplayer tiers will always yield better players on the mouse + keyboard combo. That being said, the controls can still work on the Playstation 3, and players can get relatively good.
For many other game types, a PC keyboard and mouse suffer almost like a console controller does with RTS and FPS. You’d probably want a PC gamepad or joystick to play flight sims, fighting games, racing games, sports games, and probably more. The problem with a PC is that these things aren’t standard and not every developer will care to put in rumble features or motion sensing features even if they are out for PC gamepads on the market. The number of buttons supported on a decently programmed PC game does scale accordingly though to whatever the user has. PCs are lagging behind in the pressure sensitivity department and I don’t even think DirectX supports detecting pressure on button presses unless they’ve actually updated it since DirectX8(fyi, DirectX9 still used the DirectInput8 API).
[size=18][b]OMG Look at Crysis!!!:[/b][/size]

Yeah, this game got its own section due to how much it has annoys me on these forums. It is always being compared to the abilities of the next generation consoles processing abilities as it if is some unattainable goal for consoles.
Guess what is responsible for those graphics? I’ve already said it and you probably already know it if you’ve read and understood everything I wrote so far – top end graphics cards. Can the RSX beat it alone? I might lie to you and say “yeah it can do that” and fail to mention the RSX would be running at 5 frames per second if it did - as would any comparable PC graphics card would too. But I’d rather try to be a bit more honest than what nVidia would tell you. In order for the Playstation 3 to match or surpass those visuals, the Cell would have to be used to handle some of the parts of the 3D rendering pipeline to speed up rendering through the RSX to levels which could probably even exceed what Crysis looks like. Of course, at some point in the future when GeForce 8950GTX-SLIs come out, you could probably run Crysis at ridiculously high 16xAA – 16xAF – HDR and what have you settings, but those are just polish related visuals, not the baseline visuals that are a large determinant of what makes games look good.
Short story, you won’t be disappointed with the Playstation 3’s visuals. It will be quickly outdone by PC graphics cards in terms of the nitty gritty technical settings like AA, HDR, AF, and shader model version whatever. Don’t let that discourage you because artists and improved techniques on the Cell + RSX will make the improvement of Playstation 3 visuals keep up even if it isn’t displaying more polygons with higher settings.
[size=18][u]The Final Verdict?:[/u][/size]

While PCs GPUs are evolving and pushing the visuals beyond consoles due to new graphics card hardware being released yearly, the rest of the PC world is relatively static and offers little to no improvement when it comes to gaming. When multi-core CPUs hit the shelves for desktop PCs, there could be an increase in performance for games and more tasks being done on the CPU, but no more than what Xbox360 has or will show us with its 3 cores.
All of the next generation consoles already possess more games processing power than PCs with their increased and improved SIMD units. Unfortunately, developers aren’t taking the best advantage of this extra power in most cases as writing computational code for games is more difficult than the direct logical approach.
[size=24][b]Spokesperson/Developer said the PS3 can/can’t do this!!![/b][/size]
There have been so many references to people saying things about the next generation consoles that it’s worth having a complete section for them. There are a number of reasons why that person said what they said. They are either not well informed, speaking in a very limited context that has little likelihood, or speaking in a context which doesn’t hold much validity and is based on analysis which is taken out of context. Here are a few of the popular ones and analysis on why they are either wrong, right, or both depending on the context:
[size=22][u]John Carmack:[/u][/size]

Yeah, you knew I was going to bring him up. John Carmack is generally the mastermind behind the stunning visuals on the PC titles Doom and Quake since the start of both series. He has invented a few computer graphics related techniques to bring these visuals to the table. It is also very important to note that his games generally push visual limits and not much else especially if you look at the game play quality of his latest games compared to their visual quality.
[size=18][b]On G4TV:[/b][/size]

He basically stated on G4TV that Sony made the “less optimal decision” with the peak performance of the PS3 related to the Cell processor. First thing to note is that he never said that the PS3 is weaker. He actually generally agrees that more can come out of the Playstation 3.

One of the worst things he says in this interview that should wave a huge red flag in front of your face is that he says you put most of the work in the 2 threads on the PPE. If you really know the Cell processor, you should think “wtf dude?” Why the hell would you put most of the computational work on the PPE when it sucks relatively at doing the many computationally expensive tasks that the SPEs do much better? My answer is simple and pretty reasonable. If you read the PC comparison and contrast section, PC games aren’t putting a lot of strain on PC processors today. Getting a general purpose CPU to do game related tasks is very inefficient and thus most PC developers just rely entirely on the graphics card to do graphics related tasks and even recently they have pushed to get the GPU to do more tasks like physics and even sound. They do this to make the job for the CPU more general purpose and easier to handle. John Carmack is probably stuck in this thought process for solving the problem of designing games – keeping the graphics work on the graphics processor. CPUs are only used for the “other” stuff. Maybe if he designed more complex physics engines he would see more of a need for SIMD processors on a CPU – or perhaps he would just claim that PPUs are suddenly needed to make this task easier.
The other thing he seemed to have issues with was the SPEs having to run separate programs that need to be in small nuggets. The red flag there is that a separate program is essentially a separate thread with the complications of having to move data between the two instead of just having access to the exact same resources. Although technically, the SPEs can all read from the same location in RAM and share memory that way and easily. It just wouldn’t be the fastest solution to the problem. John Carmack should see an astounding similarity between these “SPE nuggets” and shader programs which aren’t very big either. They are small programs that process large amounts of data very quickly. I guess he’s content with shader programs just because they are relatively easy to write and you don’t have to do much management to set up the communication to the program.
The last major thing he said is that Sony is forcing developers to sweat blood to take advantage of the Cell. This is kind of far from the truth. Developers do not have to take utter advantage of what the Cell offers if it isn’t necessary for what they intend on delivering with their game. On a basic level, one 3.2GHz general purpose core along with a relatively powerful RSX graphics chip should serve games well coming straight from a PC with a comparable graphics card. This just makes the 7 SPEs an utter waste if you are developing for the Cell and Playstation 3’s architecture since it can do so much more. That alone is the only thing that may force developers to sweat blood that they otherwise don’t have to.
The “less optimal decision” that Carmack referred to early in the interview is 0his speculation on what he believes developers will actually do on the Cell – not what they can do. He is primarily basing this off of the PC game development world which he is used to. There is some truth to his statements as I don’t foresee any PC game developer being able to develop for the PS3 and get any kind of superior usage of its processing power.
I’m almost positive that in the past, with his Doom 1 and Quake 1 engines, John Carmack once knew what it was like to try to get CPUs to handle a lot more graphics related tasks. It seems since he hasn’t done this in a while and he’s unwilling to consider going back and sweating the same “bullets” to get the most out of games that are being released today. I honestly think the John Carmack of the Doom 1 and Quake 1 days could put a title on Playstation 3 similar to what makes GT4 such a spectacle on the Playstation 2. I think the scale of a game engine today is just getting too much for him as he can’t fine tune everything himself anymore since the code size is too large.

[size=18][b]At QuakeCon:[/b][/size]

At QuakeCon John Carmack said so many things I could almost double this post size breaking it all down technically. I’ll do the complete opposite and make this very short. If you read the transcript the relevant major points are:

-He is very happy with the improvement of PC video cards
-He is pretty much done talking with Intel/AMD about their processors.
-He specifically mentions that he likes the Xbox360 hardware setup the most out of the next generation consoles even more so than PCs.
-He thought Xbox was much cleaner and nice of a setup than PS2 based on its tools and simple hardware setup.
-He really likes architectures with distinct, solid, parts that individually work fast at their job.

-He really doesn’t care too much for the CPU side of things and all that’s needed is a “reasonably fast CPU.”

-He mentions if you take code from an x86 (Intel/AMD) architecture and simply run it on a PowerPC chip you’d get about half of the performance.
-Graphics accelerators(GPU/graphics cards) are doing the best job at performing the parallelism paradigm.
-Parallel processing on PCs are a pain mostly due to drivers.

-Physics takes a lot of effort to actually get something that deeply effects gameplay.
-He appreciates the open platform development for the Playstation 3.
There is so much there I actually am just going to be lazy and not say anything. If you do some thinking of your own, you should be able to tell where he’s coming from. Instead of including this in my reference section, I’ll just post the link to the transcript here: [url]http://www.beyond3d.com/forum/showthread.php?p=543232[/url]

It really is obvious that he’s coming from a PC development world. A lot of what he believes in is due to the trends of the past. After reading the article, I did gain a lot of my respect back for him even though he has said some seemingly harsh things about PS3. I agree with him on a lot of what he says, but part of what he says has a bias of where he’s coming from.
[size=22][u]Microsoft:[/u][/size]

There are a number of Microsoft executives who have made statements about the Playstation 3’s hardware. Here are the major relevant ones:

[size=18][b]General Overall Comparison Report Handed to IGN:[/b][/size]

http://xbox360.ign.com/articles/617/617951p1.html

This is the first result if you type in “Xbox360 vs PS3” or the other way around in Google – and it’s extremely scary. I referenced it numerous times in my comparison in this thread already so I won’t even repeat it here. The article is basically a direct forwarding of information IGN received from Microsoft that compares the two consoles. If you read the article, pay close attention to how much of the Cell’s hardware they are ignoring(SPEs). Pay attention to how they push general purpose processing power yet they stress their VMX-128 processing(which is SIMD). Look at how they add up non-sensible bandwidth numbers that obviously don’t make sense if you’re looking at a system diagram for the Xbox360. They also make huge speculation on what the RSX is actually capable of, when even more than a year later, it is still unknown and possibly improved. This article is important because it is actually the root of a lot of later press statements Microsoft has made about PS3 and outlines their basic strategy/premise against Playstation 3.
The grand analytical conclusion of this article was that in some areas the PS3 outdoes the Xbox360, but in other areas the Xbox360 outdoes the Playstation 3 – which is true. But their expert opinion is that all of the areas that the Xbox360 outdoes the Playstation 3, are the more important ones which makes the Xbox360 have “provably more performance than PS3.” I think those PR guys at Microsoft failed discrete math and all pre-requisite courses leading to it, because they really suck at proofs and the underlying knowledge needed to actually perform them. It is this analytical number that basically leads to the “performance difference is a wash” statement you might have heard from various sources.
[size=18][b]Neil Thompson – “Next Gen DVD Player”:[/b][/size]

http://spong.com/feature/10109380

Just use simple logic. You know the PS3 will play games. Calling it just _____ is basically saying it won’t do anything else but _____. He tries to support this by claiming Sony’s only feature with the Playstation 3 is blu-ray and that blu-ray is what Sony is putting their entire effort into. Use logic – optical media readers are not exactly rocket science. Developing blu-ray has been an issue of settling specs and standards not figuring out how to get it to work. Sony is marketing the feature strongly, and costing them lots of money to produce, but it doesn’t take excessive effort to make it work. What will take effort is perhaps delivering a good blu-ray player from a software standpoint, but thankfully even if they get it wrong the first time, PS3 is in the position to update through the internet or even games including updates on disc for those who lack internet.
So where is Sony putting all of their effort? I’ll let you figure that one out, but it certainly isn’t all going into blu-ray.
Neil later says in the interview that PS3 wont be able to keep up in terms of power because they aren’t a software company. Yeah…he said that. At second glance he seems to have some validity in saying that Sony can’t keep up with their operating system. Then it breaks down even worse when he says Sony has to put a lot more processing power in their box to catch up with Microsoft. Hardware companies are hardware companies. They suck at releasing elegant software interfaces that developers really want to use, but they [b]know[/b] their hardware’s strength and will not release an interface that works slow and hides the true power of the hardware. Also because they are more separated from the developer, they are less likely to make mistakes in designing an API which assumes developers will be doing things in certain ways which they may not. Their sole purpose is to expose the hardware so developers [i]can[/i] access the power that is under the hood. Sony will not deliver an OS slower than what Microsoft puts out for the Xbox360 – neither could any hardware company making propriety software for their specific hardware.
He also says that with the original Xbox, all of the hardware isn’t valued from day one, so they built the Xbox360 to scale up with their business model. Does this mean Microsoft chose not to put the most powerful hardware into the Xbox360 or does it not? What does he mean by scalability of the Xbox? The most scaling it can do is through new external USB devices, and in that respect, Playtation 3 is just as scalable with more USB ports. The hard drive? Yeah Playstation 3’s is removable and upgradeable too. Unfortunately, those DVD9s will never scale up if media content is to ever exceed 8.5 gigs. Unfortunately, the CPU and GPU also can never scale up until a new console is released entirely.
At the very least, at least Neil Thompson isn’t supposed to be a technical guy. He gets some amnesty from my end and he was probably informed of these differences in a corporate business meeting by other corporate people.
[size=18][b]Matt Lee:[/b][/size]

http://arstechnica.com/articles/culture/mattlee.ars
In this interview, Matt Lee attempts to present a more technical look into the PS3 compared to Xbox360. Unlike Neil Thompson though, he actually assists developers in making games for the Xbox360 so he should actually know how to write code, and what it means to the hardware. In general, he’s written DopeWars, worked on an MMO for PC called Mythica, and straight from there moved to the Game Technology Group in Microsoft where he now advises other developers on how to write efficient code for Xbox360.
Matt is asked at some point during the interview to explain the Xbox360 architecture. I have already familiarized you with the Xbox360 architecture but you should compare it to his. In this section he made note about AltiVec(VMX-128) instruction set because he was asked to explain it. Matt answered and mentioned some of the additions to the VMX-128 instruction set which were either specific to Direct3D’s needs or something the SPEs already have. He also said that the best way to multithread a game has not been decided yet.
When asked about if the Xbox360 hardware had anything to help accelerate physics, Matt pointed out the VMX-128 instruction first, then fell back to the symmetrical cores, 6 hardware threads to spread out the code, unified memory architecture, and even goes further to say the GPU could be used to accelerate physics because it is a math monster and architected reasonably well to handle general purpose calculations.

After saying this about [i]his[/i] hardware, he had more to say about the PS3 when asked about it:

When asked about the Cell architecture he specifically says the Cell isn’t designed for game programming as much as Sony would have us believe and immediately focuses on the SPEs. He attacks it for not having branch prediction – which is true, but when you look at the stream/SIMD/vector processing paradigm, branches are not going to be in excess in that code. The idea behind computational methods is that you don’t have to check for things, rather the result of computations naturally make things occur – effectively eliminating branches. He says that they are poorly suited to run most game code – wait a second, define “most game code” for us Matt? Perhaps on the screen general purpose, branch laden code takes up the most space, but in execution time, most game code isn’t general purpose and branch heavy.
Additionally, the 8 operational cores of the Cell, with 2 threads on one core provides for far more options for multithreading games. But I guess he forgot to give Playstation 3 the same objective look.
He then does, in typical MS fashion, the “it can only do this” tactic with the SPEs and says they are only good for serialized streaming math code that digital signal processors typically do. He may be right in what it is good for, but he is wrong if he thinks it is the only thing they are good for.
His next attack goes at the memory architecture (local store) of the SPEs and he says the lack of automatic cache coherency (traditional caches) seems as if it would cause a lot of overhead to work with, having to copy results to system memory through DMA transactions. The problem with this statement is that he is restricting the operational nature of the SPEs to writing results of computations to system memory. This is far from the truth and is less than optimal as all 7 SPEs and PPEs would be trying to go through the memory controller on the Cell which is limited to 25.6GB/s bandwidth. An approach that works far better is using the most out of the core to core communication bandwidth on the EIB, and only accessing RAM when you have to. SPEs are also likely to output data to other input/output devices such as the graphics card, sound hardware, or to other elements to use in a typical game scenario. Writing out to system memory for communication and processing game data is merely the easiest approach in developer’s eyes as it is a single shared bank of memory – an approach that Microsoft obviously adores. Fact of the matter is that the SPE local storage has the speed of traditional cache, but requires manual control. This makes it harder but allows the execution speed to be deterministic and constant. Assuming this control wasn’t wanted, developers can fall back to letting compiler tools handle the SPE local storage for them.
Matt then moves focus to the PPE and says that they lack the VMX-128 enhancements. Where does he get off isolating the PPE and saying “you lack this” when the Cell sports 7 SPEs far more powerful than the 3 VMX-128 instruction set with enhancements? Does he forgot that those cores were built to do SIMD processing as opposed to merely providing support on a general purpose core? He also quickly mentions that the single PPE in the Cell has half of the cache size, but fails to mention that Xbox360 is splitting this cache with 3 cores, and the PPE has this cache dedicated to itself. The SPEs each have their own manually controlled caches – bringing the total on chip memory of the Cell to ~2.25MB, compared to Xbox360’s 1MB. Yes, thank you Matt for sharing those insightful numbers with us.
He also says that all of the “work” has to be crammed onto the PPE in addition to the base PS3 functionality that will be available anywhere. The only “work” that has to crammed on the PPE is the work developers feel is better suited to run there rather than the SPEs. Rendering commands by far don’t have to come from the PPE as any core inside the Cell has equal access to other elements inside the Cell and out.
He moves on and states that porting will be difficult (which is true – conversion from SIMD to general purpose and reverse). Although he says this in a manner which strongly implies that general purpose processing is what is needed and more easily relocated inside the Xenon. Relocated between what? Those identical cores in the Xenon which will not change the execution speed of the program? Thanks again Matt for hitting us with a buzzword that’s supposed to sound like performance bonuses when they are really just developer ease ideas.
One of the ugliest pieces of information Matt shares is related to the RSX. He was very direct in mentioning that the audience that actually cared about the 512MB/s of shared memory was the developers, and it is important to note that this is the only audience that would care for this aspect since it is as a matter of developer ease, and not performance gains. What he said that was completely wrong was the [i]“you'll never see a PS3 title with more than 256MB of textures at any given time, due to the split graphics and system memory banks”[/i] comment. Perhaps he was thinking of the PC world where the bandwidth between system RAM and CPU and video RAM and GPU is in the single digit GB/s range, thus textures in system memory will make a game drag. Unlike a PC, the Cell and RSX are able to communicate at 35GB/s bandwidth, and the Cell has 25.6GB/s bandwidth to its XDR RAM. This translates to 25.6GB/s bandwidth to the RSX, and even more importantly, this extra bandwidth is coming from a separate bus meaning that developers might actually want to do this intentionally to increase total bandwidth to the RSX. But rest assured, Matt and Microsoft’s insight is that developers will never [i]want[/i] to have split memory banks because it’s just that much easier to share bandwidth and not have to consider the difference.
He finishes up his technical breakdown on his overall belief on the performance difference which he calls a “wash” due to theoretical peak performance numbers that Microsoft ran in the past. I think he is referring to that ugly IGN article which is horridly wrong. When you compare theoretical peak performances, the Xbox360 is actually twice outdone in floating point, and graphical bandwidth. It is over 5 times outdone in game media capacity. I think he means to say practical performance might be a wash if he anticipates developers will be lazy and relish in what is handed to them.
Of course, Matt does make sure he states that Microsoft’s development tools a years ahead of the competition. This scale is in terms of ease of use as “power” in a development tool is hard to quantify and isn’t ultimate responsible for the quality of the code that comes out. Technically C# is 20 years ahead of C++ and 30 years ahead of C, but that doesn’t prevent C/C++ from doing all of the same things and possibly even more that their successors.
[size=22][u]Random Developers:[/u][/size]

[size=18][b]Magnus Högdahl on IGN:[/b][/size]

[b][i]"The PS3 will have a content size advantage with Blu-ray and a CPU advantage for titles that are able to utilize a lot of the SPUs. The Xbox360 has a slight GPU advantage and its general purpose triple-core CPU is relatively easy to utilize compared to SPUs. I expect that it will be near impossible to tell Xbox360 and PS3 screenshots apart."[/i][/b]

He’s a designer, not a programmer for one. And he’s working on a multiplatform title which pretty much already means the game is not considering how it will push either platform to the max unless making it better for either console, is as easy as flipping a switch. Apparently, Xbox360 is closer to allow them to just flip the on switch, and they probably already are. For the Playstation 3, his team probably doesn’t even know the switch is there, and the room is already dark. He didn’t say much in detail so it’s not like I can attack his basis for this statement other than what I already have presented.
[size=24][u]Software for PS3:[/u][/size]

What is all of the hardware inside the Playstation 3 worth if no one writes software to use it? To the consumer, absolutely nothing. Any of the standard key features of the Playstation 3, including the hard drive, motion sensing controller, blu-ray, network, and more, you can expect developers to use for games or Sony to use in the base functionality of the console. However, in the case of USB, the devices that can be attached are quite endless. Across the network, the devices the Playstation 3 communicates with, is endless. Don’t expect games to use non-standard controllers through USB. Don’t expect Playstation 3 to talk to your laptop running a Windows(Samba) share unless Sony writes software to do it. Some features games also have little use for and are unlikely to use even if it is standard like Bluetooth keyboard and mouse support. Unless Sony puts drivers for this in the base environment, they are unlikely to go the extra mile to enable pointer and text input through this means.
However, with all of this considered, “homebrew” is an entirely open field. Anything large enough group people might want to do with the hardware, will likely be done. The word homebrew is actually quite invalid in the case of Playstation 3 considering the Linux OS is standard and is meant to be an open programming playground for Playstation 3 users and developers. You might not get everything you wanted that Sony hasn’t done for you, but it will go the extra mile to do useful things Sony may have missed or has no intention of doing due to legal issues.
[size=24][u]Conclusion:[/u][/size]

You don’t have to know that all this crap is in the Playstation 3 or what it means before you choose to buy it, or buy another console, or buy none at all. But before you go around spreading analysis on what its hardware can or can’t do compared to something else, make sure you actually do research on the technical topics related to what you’re talking about, and relate it to the hardware that’s inside of both machines you’re talking about. Otherwise, you’re talking out of your ass and possibly are misleading a lot of people even you sound convincing because you partially know what you’re talking about.
[size=24][u]Background Topics / Index:[/u][/size]

These are some of the common concepts which I may or may not have explained in the text. It isn’t somewhat in logical order groups unless I decide to sort it better or differently.
[i]SIMD[/i] – Single Instruction Multiple Data. This allows a single instruction fetch to operate on multiple pieces of data. It’s kind of like accommodating multiple people on the same ferry ride instead of taking them individually on smaller boats.

Other similar/related types of processing are:

SISD – single instruction single data

MISD – multiple instruction single data

MIMD – multiple instruction multiple data

[i]Vector processor/processing[/i] – Type of processing that involves arrays(vectors) of data needing the same operation applied to each element. Vector processors are most definitely SIMD processors.
Another related topic to vector processing is stream processing. This topic is very similar to the principles that apply to SIMD architectures.
MMX/SSE/3DNow! technologies were also all introduced to add better SIMD processing ability on general purpose CPUs. MMX didn’t do the best job of this as it shared floating point registers with Intel’s Pentium chips and thus made SIMD processing and scalar floating point operations unable to occur at the same time.
[i]Scalar processor[/i] – Basically a SISD processor. They will execute instructions one at a time, with single pieces of data.

[i]Superscalar processor[/i] –Basically a SIMD processor. It is able to handle multiple pieces of data for a single instruction.
[i]DSP[/i] – Digital signal processing. Generally used in the process of taking an analog signal (sound/video), converting it to a digital form, processing it by applying some filter or transformation, outputting the results (in digital format to some internal part), and finally converting it to an analog signal again. The chain doesn’t have to be implemented like this and only one part of it actually represents the processing element.

[i]GPU[/i] – Graphics processing unit. Generally performs the rendering of 3D worlds and images in a 3D game. At the very basic level, you pass it geometry that defines surfaces, textures to apply to those surfaces, and pass lighting parameters where it goes through numerous matrix multiplies and algorithms to generate an appropriate view that has depth cue effects. This is a vastly simplified explanation of the 3D graphics pipeline and graphics cards general do far more for games today. The obvious additions to the 3D pipeline are vertex shaders which apply per-vertex operations on vertices, and pixel shaders which perform per-pixel operations on pixels after they have been rasterized.
GPU hardware vastly outperforms traditional CPUs at this task, but it can be alleviated of this task to the CPU and the graphics card would be reduced to only moving memory(frame buffer) to the analog or digital outputs to the screen it is displayed on. This would make for an unbelievably slow game though. When graphics cards first came out, they were not very programmable. They had configurable pipelines depending on application needs, and you generally passed geometry as they simply rendered the scene according to those parameters. Vertex and pixel shaders are bringing more control back to the programmers rather than just configuring.
[i]CPU[/i] – Central processing unit. This is the “software” programmable aspect of computers. Everything the CPU does is explicitly spelled out on some level of software. A game executes off of the CPU but will likely assign tasks to other processing units such as the GPU.
[i]Latency[/i] – Access time. It is basically the time it takes for a message to start to arrive at its destination. You can think of it like the speed of sound. Latency would be the time it takes for the sound to travel to your listener and start to be heard, not the time it takes for you to complete your message. High latency is worse than low latency. On determinant of latency is the bus the data is traveling on – i.e. light travels slow in diamonds but faster in water. Another determinant for latency is the speed at which the request can be fulfilled – i.e. RAM has the actually find the memory bank to get the data from or write the data to. This is called CAS latency and is a far more in-depth concept that I just found out about while doing more research for this post. You can think of CAS latency as the time it takes the operator on the phone to find what listing you requested.
[i]Bandwidth[/i] – Speed of transmission. It is basically the amount of data that can be sent and received continuously between two participants communicating. You can symbolize it as being the rate at which the speaker can talk and the listener can comprehend the speech. In the case of bandwidth, the limiter is the slower of the two participants. In other words, if the listener can only comprehend 100 words per minute, it doesn’t matter if the speaker can speak at 200 words per minute as 100 words will be dropped. In the case of computers, the speaker would be capped since the listener would be dropping data that needs to be received.
[i]Deterministic[/i] – The property of being able to be predicted/computed.
[i]Cache(ing)[/i] – a memory bank set up to improve access time(latency) from a slower part of memory. It is faster due to its architecture, and also likely due to its physical proximity to the unit that needs access to it.

CPU caches are used to avoid high latency access to RAM which is usually in hundreds of cycles as opposed to single digits to 20 cycles. Traditionally, CPU caches are hardware controlled which means it is “automatic” from a software perspective.

You also hear the term “cache” in other contexts such as hard drive caching. This is relative to an optical media format, and is primarily done to improve the bandwidth limitation from the optical media and not a latency issue – since latency to both devices is extremely high anyways. Caching also occurs with web browsers storing content offline and checking to see if they have updated since they last requested the resource.
[i]Pipelining[/i] – Most all processors made for over a decade have a pipeline or pipelines. It is pretty much an assembly line of processing instructions, where a single instruction has to go through various stages for completion. It might not seem obvious that a simple instruction like addition would have stages, but it does have some.
These stages represent one clock cycle as instructions spend only one cycle in each stage and are completed to move onto the next. A 7 stage pipeline would mean that the longest instruction takes 7 cycles to complete from the moment of entry to the moment it exits the pipeline. In order to not waste this natural design, pipelining allows multiple instructions to be in the pipeline simultaneously. Thus an addition instruction between two operands can be in the pipeline at stage 3, subtraction in stage 2 with two operations, and a load instruction in the pipeline at stage 1. Doing this also means that an instruction decoder has to be placed at each stage in the pipeline to know what it needs to accomplish for that piece of the puzzle.

[i]Deep pipeline[/i] – a deep pipeline is one with many stages. The Pentium 4 has around 20 stages in its pipeline. A deep pipeline presents issues which need to be addressed by other techniques.
[i]Hyper-threading[/i] – Duplicating hardware pipelines to allow for two pipelines to execute code simultaneously. The benefit of this is primarily to allow processing of two independent threads simultaneously. It also provides the benefit if a pipeline is stalled due to a high latency memory access which could potentially take hundreds of cycles. It allows the other pipeline to run if it isn’t dependent on the other.
[i]ILP[/i] – Instruction level parallelism. Generally this is a topic of scalar processors. It basically is a property of instructions that are independent of each other and can be executed concurrently. Additionally, if one considers this property a little deeper, you can see how it also means the instructions can be executed in [i]any order[/i].
[i]Out-of-order execution[/i] – This is a CPU feature which would allow instructions to be executed out of the order that it is issued by the code as the hardware sees fit. The reason for this is also to avoid pipeline stalling. Basically, if an instruction will have a latency hit at all (cache or RAM access), it might be able to execute certain instructions before the completion of a slower task.
Out-of-order execution uses hardware to analyze ILP. It also has an instruction window at the end of the pipeline to re-order the instructions at the end if necessary.
[i]In-order execution[/i] – Opposite of out-of-order execution. Basically, CPUs that have to issue instructions in order because they lack the hardware to execute them out of order and reorder them appropriately. This is generally considered inferior, but saves die space and power dissipation due to less hardware, allowing for higher clock speeds and greater efficiency.
[i]Word size[/i] – a WORD in computing is the natural unit size that the particular architecture can handle. On a 32-bit processor, the WORD size is typically 32-bits and operations performed in memory are fastest when aligned in 32-bits segments. Instructions are 32-bits in size as to take only 1 cycle to fetch the instruction.

Word name variations come in DWORD (double word), or QWORD(quad word) – and hopefully you can figure out their relative sizes from their names. Today, WORD most commonly represents 32-bits even if the architecture may not be 32-bit.

[i]VLIW[/i] – Very long instruction word. Binary opcodes are what tells hardware what to do. Along with those opcodes are labels for what registers to perform the operations on, or literals (data is actually in the instruction) to perform the operation on. Altogether, the opcode and parameter information make up an instruction. The size of an opcode is determined by the number of possible instructions the hardware can perform, and the size of the parameters is dependent on the number of registers possible to perform the operations on, or the size of the data that might be encoded into the instruction itself.

Typically, a 32-bit processor uses 32-bit instructions. This means that one instruction will be processed at a time as the whole 32 bits comes in at once and handles execution in a linear fashion. On a 64-bit or higher processor, a bigger instruction(64-bits wide) can be fetched in one cycle, but if the instruction set can fit in only 32-bits, this extra space can be used to fetch and decode two instructions at once to be executed in parallel down two separate pipelines.

VLIW is an approach that is based on ILP and is determined at compile time. Unlike superscalar CPUs, the VLIW approach contains separate instructions for each execution unit/pipeline instead of one operation to perform on many pieces of data, using multiple execution units to accomplish the same task in parallel.

[i]Branch prediction[/i] – In a pipelined architecture one of the issues is branching. How does the CPU know which instructions will follow? In the case of a branch statement, the direction lies in the result of the conditional logic which is elsewhere in the pipeline and the results of which may not be known yet. If the pipeline is deep, then a higher number of cycles would be wasted by flushing the pipeline due to the wrong set of instructions being loaded.
Branch prediction hardware can be very simple or complex. One of the simplest techniques is a branch history. I forget the exact statistic, but in general branch results are usually the same as they were before. This is evidence if you’ve ever coded and done for loops with code that looks like this:

[code]

for(int i = 0; i < 100; i++)

{

//do something

}

[/code]

It might not be evident that there is conditional logic every iteration in a loop, but it is there in the form of checking if i is less than 100, and that check will be true 100 times, and false only once.
[i]Loop unrolling[/i] – The processor of flattening out repeated code. On a high level it is the difference between telling someone to hand over 100 apples to you one at a time making it 100 iterations of “handing over.” Or you could tell them to hand you 100 apples, 5 at a time going over only 25 iterations of handing over. In code it might look like:
[code]

//normal loop

for(int i = 0; i < 100; i++)

array[i] = array[i] + 1;

//unrolled loop (to a degree)

for(int i = 0; i < 100; i+= 5)

{
array[i] = array[i] + 1;

array[i + 1] = array[i + 1] + 1;

array[i + 2] = array[i + 2] + 1;

array[i + 3] = array[i + 3] + 1;

array[i + 4] = array[i + 4] + 1;

}

 [/code]

Both loops accomplish the same thing but one takes larger strides, iterating less times, hitting the branch check ‘i < 100’ fewer times.
On a scalar processor this is a benefit due to less branching needing to be done, but it requires use of extra registers. This is why the SPEs have such a large register file of 128 registers at 126-bits wide.
[i]Motherboard[/i] – houses all components of a computer based system. A CPU will connect to it, RAM will be connected to it, and video card will be connected to it with attached video memory. It is important that a motherboard’s support exceed or match the components that are put on it, otherwise the components will be stepped down to what the motherboard supports (in the cases where it is still compatible). For example, if you have fast DDR RAM, but your motherboard doesn’t support it, connecting DDR RAM will not give you higher bandwidth. If your motherboard doesn’t support hyper-threading/multi-core CPUs, your bios and operating system will never see it and thus never use it unless it is utilized by hardware mechanisms.
[i]Northbridge[/i] – part of a motherboard that houses the fast components of a computer system. Typically this is the RAM and graphics chip. There is a relatively large amount of bandwidth required from these components.
[i]Southbridge[/i] – part of a motherboard that houses the slower components of a computer system. Typically these are I/O devices like optical drives, hard drives, USB, network devices, and other permanent storage devices.
[i]Queue[/i] – first in first out (FIFO) data structure. Basically it is the traditional concept of a line where the order of exiting is the same order they came into the line. Queues are typically modified from this strict traditional sense to accommodate for priority. A priority queue, would be something like a hospital line, where fatally injured patients are moved to the front of the line to be processed first while others with non-fatal injuries can wait and still be healed.

[i]Read vs Write Priority[/i] – On a computer system with memory bandwidth limitations, if the bandwidth for reading and writing are not equal, the read speeds will typically be greater than the write. The reason for this is that write operations do not need to have occurred until it is actually accessed at a later point in time which isn’t always immediate. Write operations can wait in a queue to be processed when the bandwidth is available instead of immediately. On the contrary, reading means that the data is needed *now* in an operation or the system might have to wait for it causing a pipeline stall.
[i]Order of Magnitude[/i] – Used to describe a scale of comparison. The scales are separated by an exponent, typically 10. For example, numbers between 1 and 10, are in the same magnitude of 10^1 (10 to the first power). Numbers between 10 and 100 are in the magnitude of 10^2. To be separated by orders of magnitude is the direct difference between the exponent of the scale of the two numbers. For example, 5 and 500 are two orders of magnitude away since 5 is magnitude 1 (10^1), and 500 is of magnitude 3 (10^3). 3 minus 1 is 2 -> two orders of magnitude separation. Order of magnitude differences in performance are huge in the world of computing.

In the computer science world, the common base for the logarithms is 2, not 10. So if you hear this term being used, it generally refers to the base of 10 unless you are talking about computing. In this post, the base I am referring to is 2, since this is the world of computing.
Order of magnitude may also be used to referred to different common scales depending on application. For example, seconds is a magnitude lower than minutes. Minutes is a magnitude lower than hours, and so on so forth on the scale of time. Same thing can be said for distance when you jump from inches, to feet, to miles; jump from centimeters, to decimeters, to meters, to decameters, to kilometers. The important thing to know is that order of magnitude is almost always specific to the context it is used in.
[i]Dot product[/i] – A mathematical operation between two vectors that results in a scalar value (plain number). If this value is 0, the vectors are perpendicular, otherwise the larger the result of this operation, the more “parallel” the two vectors are – there is a maximum value of the result depending on the magnitude of the two vectors.
The calculation of a dot product can be done in two ways. A represents a vector, B represents another vector, and ~ represents the dot product operation. Both A and B have x, y, and z components are referenced using A(x, y, or z) and B(x, y, or z). Theta is the angle between the vectors A and B. Standard order of operations apply(multiply before adding). |A| represents the length (also called magnitude) of the vector A relative to the origin (0, 0, 0).
A~B = |A| * |B| * cos(theta)

Or

A ~ B = A(x) * B(x) + A(y) * B(y) + A(z) * B(z)

The prior way to find the dot product is not fast considering there is a trigonometric function, and calculating the magnitude of a vector involves other costly operations on computers that I won’t get into. The main purpose of this is to see that a dot product is nothing but a series of multiplies, and then addition between the results. This operation lends itself well to SIMD architectures.
Dot products come up often in 3D game programming. One application of the dot product is to generate vertex normals(vertex referring to a triangle surface and not 3D position). Normals are generally perpendicular vectors to the surface and are needed to apply realistic lighting models to surfaces. Surface normals can be used in other creative ways to accomplish other 3D effects too.
[i]Game loop[/i] – The “loop” constitutes one frame of animation/action/calculations that a game performs to simulate a real time experience. The speed of this loop represents the frames per second the game is running at. It is pretty much the same as how a movie is displayed – each frame is displayed individually and shown to you to deliver the effect of motion. Similarly, each frame updates game objects and re-renders them in new positions according the new input, AI routines, or physics reactions. Traditional steps that need to be accomplished in a game loop are (loosely in order):
1. Get user input.
2. Update player avatar (who the player is controlling).
3. Update the game’s objects.

4. Check for collisions, apply physics, and react appropriately.

5. Render all of the objects in their new positions.
That is of course, a stripped down game loop. Sound could be initiated anywhere from steps 1-4 depending on what happens. Steps 3 and 4 are very interrelated, and even step 2 could be sucked into it. By no means is this order strict and often parts of the loop are going on throughout the loop as soon as possible (to ensure fastest completion).
[i]Vertex[/i] – in the 3D graphics world, a vertex simply represents a single 3D point in space – x, y, and z. 3 vertices make up a triangle. 4 vertices make up a square (or two triangles). 3D worlds are made up of a large set of vertices to define primitives(basic 3D constructs) that are used to display objects on the screen.
[i]Frame buffer[/i] – the memory that contains the pixel information of what can, or is going to be displayed on screen. A frame buffer is the result of rasterizing 3D information (converting to pixels). Pixel shaders operate on frame buffers.
[i]Pixel shader[/i] – a program that is executed on the GPU that processes pixel information after the 3D world has been rasterized. A pixel shader could be responsible for post processing effects such as making the whole screen red by simply modifying all pixels to have more red than they started out with. They could put rain effects on the screen by adding pixel groups that simulate rain. They can blur parts of an image for focus effects. The primary thing to remember is that it occurs late in the 3d graphics pipeline and works on a frame buffer and outputs a modified frame buffer.

[i]Vertex shader[/i] – a program that is executed on the GPU that processes vertex information. A vertex shader is a prime candidate for cloth simulation by modifying the vertex position of each point on the cloth surface. It can also be used to simulate water surfaces
[i]Anti-aliasing[/i] – common abbreviated as “AA.” This is the process of getting rid of jagged edges and other artifacts that occur in a 3D image. The two approaches to accomplishing this are multi-sample anti-aliasing(MSAA), and full scene anti-aliasing(FSAA).
MSAA takes the frame buffer, and samples it a number of times, progressively producing a less anti-aliased picture. The number of times the image is sampled is represented by the multiplier in front of MSAA. In other words, 4xMSAA samples the screen 4 times – thus has to be read, processed, and dumped to memory 4 times before it is done.
FSAA is rendering the frame buffer at a much larger size than the resolution that will be displayed and then image is then down-sampled once to the display resolution. The multiplier in front of FSAA represents the size of the over-sample. In other words, 4xFSAA will render an image 4 times the size of the actual resolution. This means the frame buffer size will take 4 times the memory required than the actual end display surface.
[i]VMX-128[/i] – This is the SIMD processing unit and instruction set name for the PowerPC core. It was named AltiVec by Motorola who invented it. Due to trademark issues IBM has renamed it VMX-128.

[i]ICT[/i] – Image Constraint Token – for HD-DVD and Blu-Ray, if content providers wish to turn this token on in their media, it will only enable playback through approved HDCP signals. If at any point, the signal goes through an unapproved medium, the image quality will be down-sampled to 540p.
[size=24][u]References:[/u][/size]

This is by no means a formal list or all inclusive. Over time it is hard for me to remember if I read something in an article, encyclopedia, journal, or learned it in the classroom. I’m actually positive I have many sources not listed here that I read, but I only added these because I either remember actually using something from it, or it was a good article that shared similar information with another that I did use. Thankfully this isn’t a dissertation or anything so no one’s going to fry me for plagiarism.
http://arstechnica.com/articles/paedia/cpu/simd.ars - SIMD Architecture article.
http://en.wikipedia.org/wiki/Main_Page - Wikipedia used to gain a general understanding of “what things are” for many of the topics. For absolutely specific information on the hardware, I generally followed its references to other articles.

http://www.blachford.info/computer/Cell/Cell0_v2.html - Very good old article giving an in-depth look at the Cell processor. Some of the specifics in this article might be invalid for the PS3’s Cell configuration.

http://www.ati.com/developer/eg05-xenos-doggett-final.pdf - PDF warning, Light XBox360 GPU coverage. Offers mostly architectural overview.
http://www-128.ibm.com/developerworks/library/pa-fpfxbox/ - Most technically detailed article I found on the Xbox360 CPU hardware.

http://www.hotchips.org/archives/hc17/3_Tue/HC17.S8/HC17.S8T4.pdf - a good PDF with system level diagrams of Xbox360 hardware.
http://arstechnica.com/articles/paedia/cpu/xbox360-2.ars/1 - Arstechnica article covering the Xbox360 CPU.
http://techreport.com/etc/2005q2/xbox360-gpu/index.x?pg=1 – good article covering the Xbox360 GPU.
http://www.gamepc.com/labs/view_content.asp?id=xdrpreview&page=1 – article with some nice coverage on XDR RAM.

http://www.anandtech.com/showdoc.aspx?i=2453&p=1 – Pretty good AnandTech article covering an overall comparison between the Playstation 3 and Xbox360. It is one of those “we’ll make them equal” type comparisons though.
http://www.anandtech.com/systems/showdoc.aspx?i=1561 – good AnandTech article covering the hardware between PS2 and Xbox last generation.

http://www-128.ibm.com/developerworks/library/pa-cellperf/ - technically detailed IBM resource for the first implementation of the Cell processor. Includes some very good detail on what kind of performance you can get from the Cell, and in what situations.

http://arstechnica.com/articles/paedia/cpu/cell-1.ars - pretty good Arstechnica article on the Cell processor – part I.
http://arstechnica.com/articles/paedia/cpu/cell-2.ars - pretty good Arstechnica article on the Cell processor – part II.
http://www.realworldtech.com/page.cfm?ArticleID=RWT021005084318 – Real World Technologies article on the Cell processor.
http://www.anandtech.com/cpuchipsets/showdoc.aspx?i=2379 – Good Anandtech article on the Cell processor.
http://researchweb.watson.ibm.com/journal/rd/494/kahle.html - Great IBM article giving a good introduction to the Cell.

http://www.research.ibm.com/cell/ - good site covering the Cell project and various aspects and design goals of it.
[i]Cell BE Handbook v1.0[/i] (May 2006) – I used this mostly to just read up on some of the instructions on the SPEs and insight to some of the problems and applications of SIMD.
