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Abstract. The non-trivial Clifford algebras over the ring Z are non-
commutative. On the other hand, the Clifford algebras over the ring Z2

are commutative.
This result is non-trivial in that it does not depend solely on either

Z2 or the Clifford algebras. The non-trivial Clifford algebras over the
ring Z3 and the matrix algebra with basis {[ 1 0

0 0 ] , [ 0 1
0 0 ] , [ 0 0

1 0 ] , [ 0 0
0 1 ]} over

the ring Z2 are still non-commutative.
In this paper, we analyze the structure of the Clifford algebras over

the ring Z2, explore what relationship between these algebras and the
ring Z2 induces the commutativity, and lay out some of the necessary
and/or sufficient conditions for such a shift in commutativity.

1. Motivation

In non-commutative rings there are some elements which commute with
every other element. The set of elements of the ring R which commute with
every other element of R is called the center of R and is denoted Cen(R).
In the form of equations,

c · a = a · c ∀c ∈ Cen(R),∀a ∈ R (1.1)

Because 0 ∈ Cen(R), Cen(R) can never be empty. And, in non-commutative
rings, Cen(R) 6= R. It is then natural to formulate the question, “How non-
commutative is a ring?”. One way to approach that question is to compare
the cardinality of Cen(R) and the cardinality of R. Unfortunately, the
answers to that question will not be very interesting unless the ring is finite.

Another way to answer the question “How non-commutative is a ring?”
is to compare the number of generators of Cen(R) with the number of gen-
erators of R. This approach has potential if R is finitely generated. But,
this paper does not pursue this.

Another way to approach the question is to rephrase the question as
“What are the minimum requirements that a ring homomorphism φ must
satisfy so that φ(R) is commutative?” A special case of this question is
“Given a non-commutative algebra, over what rings is it commutative?”
This paper will tackle that question as it relates to the Clifford algebras.

Clifford algebras were not my first choice of targets. I had originally been
exploring the quaternion algebra. The quaternion algebra, however, is one
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subalgebra of the three-vectored Clifford algebra C`3. As the work of this
paper holds for all Clifford algebras and their subalgebras, the scope of this
paper was broadened to encompass them.

2. Algebras in General

An algebra A is a vector space FV with vectors from V and scalars from
a field F and a bilinear product defined which maps FV × FV→ FV.

In this paper, we will be more concerned with algebras over rings, than
algebras over fields. Our scalars will come from a ring R instead of a field
F. Nothing about the product requires the use of a field instead of a ring.
A vector space with scalars from a ring R is called an R-module. There
does not appear to be a term for an algebra with scalars from a ring. In this
paper, we will use the term algebra to mean an algebra over a ring.

So, for the purposes of this paper, an algebra A is an R-module RV with
vectors from V and scalars from a ring R and a bilinear product defined
which maps FV × FV → FV. The fact that the product is bilinear means
that for vectors u,v,w ∈ V and scalars α, β ∈ R, the product obeys:

(α · u + β · v) ∗w = α · (u ∗w) + β · (v ∗w) (2.2)

u ∗ (α · v + β ·w) = α · (u ∗ v) + β · (u ∗w) (2.3)

A normed vector space1 is a vector space in which every vector a has a
magnitude ||a|| such that ||a|| ≥ 0, ||a|| = 0 iff a = 0, for any scalar k we have
||k · a|| = |k| ||a||, and ||a + b|| ≤ ||a|| + ||b||. The most common norm is the
L2-Norm which is

||a||2 = |a| =
√
a2

1 + a2
2 + · · ·+ a2

n (2.4)

3. The Cross-Product

For three-dimensional vectors, the vector cross-product is a bilinear prod-
uct which maps FV×FV→ FV. As such, the real-valued three-dimensional
vectors form an algebra. But, this is an accident of three dimensions.

The cross-product maps a pair of vectors to a perpendicular vector whose
length is the area of the parallelogram with the two original vectors as sides.
In two-dimensions, there just isn’t a vector perpendicular to two non-parallel
vectors. And, in attempting to scale this up in dimensions, one is looking
for a vector product that satisfies2:

(a1 × a2 × · · · × ak) · ai ∀1 ≤ i ≤ k (3.5)

|(a1 × a2 × · · · × ak)| = |V| (3.6)

1[Weisstein] Norm
2[Lounesto] p. 98
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where V is the signed-volume of the parallelpiped determined by the vectors.
The only non-trivial solutions3 to this are:

n dimensions with n− 1 factors
7 dimensions with 2 factors
8 dimensions with 3 factors

(3.7)

So, in order to form a class of algebras which will be useful for vectors
of any given dimension, one must abandon the cross-product. A different
product, called the exterior product or outer product, can be used in place
of the cross-product.

The exterior product of n+ 1 vectors from R
n is 0. The exterior product

of n linearly independent vectors from R
n has the same magnitude as the

n-factored cross-product in Rn+1 would have. However, the exterior product
is useful for other than n terms.

The 3-dimensional cross-product maps a×b to a vector whose magnitude
is |a| · |b| · sin θ where θ is the angle between the vectors and |x| is the L2-
norm defined in equation 2.4. The exterior product in n-dimensions has
this same magnitude, but the result is not a vector. The result is called a
bivector4 or 2-form5. And,

|a ∧ b| = |a| · |b| · sin θ
Similarly, the exterior product of 3 vectors is a trivector or a 3-form.

The exterior product, like the cross-product, is antisymmetric. That is
that:

a ∧ b = −b ∧ a (3.8)

The exterior product is a bilinear product which maps A×A → A. The
algebra of the exterior product is called the Grassman algebra. The Clifford
algebras which follow are a related to the Grassman algebras but have some
other properties which make them more useful in n-dimensional geometry.

4. The Clifford Algebras

To form the n-vectored Clifford algebra C`n, one starts with n orthogonal
unit vectors {e1, e2, . . . , en} from a normed vector space and creates an
algebra so that for all r we have r2 = rr = |r|2.

Note. The Clifford product of a and b is written ab to distinguish it from
the other familiar vector products a · b, a× b and a ∧ b.

There is one other notational convention that is important for the Clifford
algebras. The product ei1ei2 · · · ein is usually abbreviated ei1i2···in . Because
the product of vectors is associative, this doesn’t create any ambiguity.

Now, let us illustrate the Clifford algebras with an example. Consider a
vector in RC`2. It would be xe1 +ye2 where x, y ∈ R. In order to satisfy the

3[Lounesto] p. 98
4[Gull] A Little Un-Learning
5[Weisstein] Wedge Product
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above requirements, (xe1 + ye2)2 must equal x2 + y2. Simply multiplying
out the right hand side, we have

x2e1
2 + xye12 + yxe21 + y2e2

2 = x2 + y2 (4.9)

This means that e1
2 = e2

2 = 1 and xye12 = −yxe21. It is easy to see
from this that if either x or y is a non-zero member of Cen(R) and x ·y 6= 0,
then e12 = −e21. In order to make them useful over all rings, we define the
product this way e12 = −e21.

This pattern holds for all of the Clifford algebras. If ei and ej are two of
the n orthogonal unit vectors, then

eij =

{
1 if i = j,

−eji if i 6= j.
(4.10)

Now, if we use this result to multiply two vectors in R2, we have

(ae1 + be2) · (ce1 + de2) = ace1
2 + ade12 + bce21 + bde2

2

= (ac+ bd) + ade12 − bce12

= (ac+ bd) + (ad− bc)e12

(4.11)

This looks like an odd result. We have multiplied two vectors and gotten
something that is a scalar and whatever this e12 thing happens to be.

We can see that e12 cannot be either a scalar or a vector because

e12
2 = e12e12

= −e21e12

= −e2e1
2e2

= −e2e2

= −1

(4.12)

This element e12 is called a bivector or a 2-form. It happens that because
e1 and e2 are orthogonal, that e12 = e1 ∧ e2.

If we add 1 and e12 into the algebra, we can achieve closure. It is easy to
see that multiplying by scalars does not go outside of the algebra. And, we
can see that multiplying a vector and bivector results in a vector because:

e1e12 = e1
2e2

= e2
(4.13)

e12e1 = −e21e1

= −e2e1
2

= −e2

(4.14)

And, by similar reasoning

e2e12 = −e1 (4.15)

e12e2 = e1 (4.16)
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Thus, a typical element of RC`2 looks like a + be1 + ce2 + de12 where
a, b, c, d ∈ R. The shorthand notation for this is

C`2 = R⊕R2 ⊕
2∧

R2 (4.17)

This means that an element of C`2 can be expressed as the sum of a
scalar, a 2-vector, and a bivector. The notation

∧2 R2 here means the
exterior product of two orthogonal vectors eij where i < j.

For larger Clifford algebras (ones with more orthogonal unit vectors), one
has to incorporate things other than scalars and bivectors. The concepts
above all extend naturally. And, as an analogue to equation 4.17, we have

C`n = R⊕Rn ⊕
2∧

Rn ⊕
3∧

Rn ⊕ · · · ⊕
n∧
Rn (4.18)

The notation
∧k Rn here means the exterior product of k orthogonal vectors

ei1i2...ik where ij < ij+1. Using the convention that
∧0 Rn = R, we could

express this equation as:

C`n =
n⊕
k=0

k∧
Rn (4.19)

And, the elements of the k-th portion of the direct sum are called k-forms.
The portions of equation 4.19 where k is even is denoted C`+n . We can

see that C`+n is a subalgebra of C`n. Certainly, C`+n is closed under addition.
When multiplying a k-form by a j-form, the resulting product can be reduced
by annihilating like subscripts as we did in equations 4.12 through 4.16. The
annihilation always happens in pairs. Thus, if both k and j are even-forms,
then their product will be an even-form.

4.1. The Complex. To employ some of the formalisms above and as a
stepping stone to the next subsection, we will show that RC`+2 ∼= RC.

Consider elements (a+ be12) , (c+ de12) ∈ RC`2.

(a+ be12) + (c+ de12) = (a+ c) + (b+ d) e12 (4.20)

(a+ be12) · (c+ de12) = (ac) + (ad) e12 + (bc) e12 + (bd) e12
2

= (ac) + (ad+ bc) e12 − (bd)

= (ac− bd) + (ad+ bc) e12

(4.21)

We can see that substituting i in for e12 satisfies all of these equations as
well.

4.2. The Quaternions. In a similar way, the quaternions H are isomorphic
to the algebra C`+3 . The basis elements of C`+3 are {1, e12, e13, e23}. With
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the mappings

1↔ 1
i↔ e12

j ↔ e23

k ↔ e13

(4.22)

we can easily verify that the quaternion properties hold:

i2 = j2 = k2 = ijk = −1 (4.23)

Because of this isomorphism, any way in which commutativity can be
induced in C`n (where n ≥ 3) is directly applicable to the quaternions. If
the algebra RC`n is commutative, every subalgebra will be commutative.

5. Inducing Commutativity

The Clifford algebras (except for the trivial C`1) are generally non-commutative.
This is a natural consequence of the fact that eij = −eji. However, the struc-
ture of the Clifford algebras is such that over some rings, the algebra over
the ring will be commutative. The relationship eij = −eji gives us a good
hint about where to start looking for such rings.

5.1. Trivial Rings.

Theorem 5.1. A Clifford algebra over a ring whose multiplication is iden-
tical to zero is commutative.

Proof. In multiplying a term αea1a2...as by a term βeb1b2...bt where α, β ∈
R and ea1a2...as , eb1b2...bt ∈ C`n, we will necessarily get (αβ)ea1a2...asb1b2...bt

which is 0ea1a2...asb1b2...bt . Adding up any number of these terms will give 0.
Similarly, if we multiply in the other order, we obtain 0. So, ab = 0 = ba

for all a,b ∈ RC`n.

One example of such a ring is the subring R = {0̄, 2̄} of Z4. Other exam-
ples are easy to construct from any Abelian group (G,+) by constructing
the ring R = (G,+, ·0) where a ·0 b = 0 for all a, b ∈ R.

These rings are rather unrewarding though because each simply turns the
Clifford algebra C`n into an algebra where every product is zero.

5.2. Over Positive Rings.

Definition 5.1. Define positive ring to be a ring R where x = −x for each
element x ∈ R.

Theorem 5.2. A Clifford algebra over a positive commutative ring is com-
mutative.

Proof. Consider the products ab and ba where a = αea1a2...as and b =
βeb1b2...bt . Here, α, β ∈ R with R a positive commutative ring.
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ab = (αea1a2...as)(βeb1b2...bt) = (αβ)ea1a2...asb1b2...bt (5.24)

ba = (βeb1b2...bt)(αea1a2...as) = (βα)eb1b2...bta1a2...as (5.25)

Because R is commutative, we could rewrite equation 5.25 as

ba = (βeb1b2...bt)(αea1a2...as) = (αβ)eb1b2...bta1a2...as (5.26)

If any of the subscripts ai are equal to any of the subscripts bj , then we
can move them together via the same transpositions of adjacent subscripts
as we did in equations 4.12 through 4.16 using the fact that if ci 6= ci+1,
then

ec1c2...cici+1...cs+t = −ec1c2...ci+1ci...cs+t (5.27)

If ci = ci+1, then the subscripts annihilate one another because eiei = 1, so

ec1c2...ci−1cici+1ci+2...cs+t = ec1c2...ci−1ci+2...cs+t (5.28)

This process can be applied to reduce the number of subscripts in ab and ba
to a unique list. This process can also be used to sort the list of subscripts
so that in ec1c2...cu we can have ci < ci+1 for 1 ≤ i < u.

If we do this for both ab and ba, they will both have the same subscript
lists. However, it may take us a different number of transpositions to ac-
complish this for ab than for ba. Each of these transpositions toggles the
sign. So, ab may differ in sign from ba.

Thus, if αβ = −αβ, which is true in R, then ab = ba. Because the
product of arbitrary elements of the Clifford algebra are composed of sums of
products typified by ab, it follows that the Clifford algebras are commutative
over R.

Corollary 5.3. A Clifford algebra over a positive ring with multiplication
identical to zero is commutative.

Proof. This follows trivially from theorem 5.1. We could also prove it by
applying theorem 5.2 with the observation that αβ = 0 = βα for all α, β ∈
R.

The subring R = {0̄, 2̄} of Z4 mentioned earlier is an example of a positive
ring with multiplication identical to zero.

Corollary 5.4. A Clifford algebra over a Boolean ring is commutative.

Proof. We can see that all Boolean rings are positive and commutative be-
cause by definition, a ring R is Boolean iff b2 = b for all b ∈ R.
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From this, we can see that b = −b for all b ∈ R. Consider (x+ x) ∈ R.

(x+ x)2 = x+ x

(x+ x)(x+ x) = x+ x

x2 + x2 + x2 + x2 = x+ x

x+ x+ x+ x = x+ x

x+ x = 0
x = −x

(5.29)

Now, using the above and considering for a moment (x+ y) ∈ R, we can
see that:

(x+ y)2 = x+ y

(x+ y)(x+ y) = x+ y

x2 + xy + yx+ y2 = x+ y

x+ xy + yx+ y = x+ y

xy + yx = 0
xy = −yx
xy = yx

(5.30)

So, all Boolean rings are commutative and positive. Then, by theorem
5.2, this corollary holds.

The ring R = Z2 is an example of a Boolean ring. Some other examples
of Boolean rings are R = Z2 × Z2 × · · · × Z2 and R = (P(X),4,∩).

Question. Is it possible to have a commutative, positive ring that is not
trivial or a Boolean ring?

This question plagued me for several days. I could not prove or disprove
the existence of such rings. The proof that Boolean rings are positive is
straightforward. The question of whether all commutative, positive rings
were trivial or Boolean was elusive. However, as we shall see, examples of
such rings were right under my nose.

The first non-trivial, commutative, positive ring which I discovered was
Z2[x]—the ring of polynomials over Z2.
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Theorem 5.5. The ring Z2[x] is a commutative, positive ring.

Proof. Consider the polynomials f(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m and
g(x) = b0 + b1x+ b2x

2 + · · ·+ bnx
n. The product of these polynomials is:

f(x) · g(x) =
m+n∑
i=0

 ∑
i=j+k

aj · bk

xi

=
m+n∑
i=0

 ∑
i=j+k

bk · aj

xi

=
m+n∑
i=0

 ∑
i=j+k

bj · ak

xi

= g(x) · f(x)

(5.31)

And, for any polynomial f(x) = a0 + a1x + a2x
2 + · · · + amx

m ∈ Z2[x],
we have that:
f(x) + f(x) = (a0 + a0) + (a1 + a1)x+ (a2 + a2)x2 + · · ·+ (am + am)xm

= 0 + 0x+ 0x2 + · · ·+ 0xm

= 0
(5.32)

which concludes the proof.

So, by theorem 5.2, the Clifford algebras over R = Z2[x] are commutative.
Shortly after discovering this example of a commutative, positive ring,

I found a plethora of others. As it happens, any Clifford algebra over a
commutative, positive ring is itself a commutative, positive ring.

Theorem 5.6. The Clifford algebra over a commutative, positive ring is a
commutative, positive ring.

Proof. By theorem 5.2, we know that the Clifford algebra over a commuta-
tive, positive ring is commutative.

And, in the proof of theorem 5.2, each term contributes something which
is its own additive inverse. It remains to show that if α+α = 0 and β+β = 0,
that (α+β) + (α+β) = 0. This follows directly from the fact that addition
is associative and commutative.

(α+ β) + (α+ β) = α+ β + α+ β

= α+ α+ β + β

= (α+ α) + (β + β)
= 0 + 0
= 0

(5.33)

So, we have shown both commutativity and positive-ness.
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In particular, this means that if R is a commutative, positive ring, then
the Clifford algebras commute over RR, RC, RH, RC`n, R[x]C`n,

RC`nC`m,
and the whole gamut of these sorts of combinations and their subalgebras.

5.3. Over Other Rings. From what we have seen in the proof of theorem
5.2 with regard to the terms that make up a product in the Clifford algebras,
the commutative, positive rings are slightly more than is necessary to induce
commutativity.

As we saw in the proof of theorem 5.2, the two terms a = αea1a2...as and
b = βeb1b2...bt will contribute ±(αβ)ec1c2...cu and ±(βα)ec1c2...cu to the final
products ab and ba. As such, the real requirement to induce commutativity
in C`n is that the ring elements satisfy:

±(αβ) = ±(βα) (5.34)

On the surface, equation 5.34 looks exactly like the requirement that it
be commutive and positive. Definitely, the portion that +(αβ) = +(βα)
requires that the ring be commutative. But, if the ring does not have a
multiplicative identity, then there may exist elements which do not have to
be their own additive inverses because they will never be the result of a
product.

One example of such a ring is:

+ 0 a b c
0 0 a b c
a a c 0 b
b b 0 c a
c c b a 0

· 0 a b c
0 0 0 0 0
a 0 c c 0
b 0 c c 0
c 0 0 0 0

(5.35)

Here, neither a nor b are their own additive inverse. But, every product is
either c or 0 which are their own additive inverses.

However, if the ring had an identity, then either α or β could be the
identity. That would then require that every element of the ring be its own
additive inverse.

6. Inducing In Other Algebras

The commutative, positive rings do not generally induce commutativity
in the matrix algebra with basis {[ 1 0

0 0 ] , [ 0 1
0 0 ] , [ 0 0

1 0 ] , [ 0 0
0 1 ]}. What is different

here?
In the case of the Clifford algebras, the terms a = αea1a2...as and b =

βeb1b2...bt contribute to (though not always with the same sign) the same
ec1c2...cu for both ab and ba.

For this matrix algebra, that is not the case. If we let a = α [ 1 0
0 0 ] and

b = β [ 0 1
0 0 ], then we have

ab = (αβ) [ 0 1
0 0 ] (6.36)



INDUCING COMMUTATIVITY 11

and

ba = (βα) [ 0 0
0 0 ] (6.37)

So, the term ab contributes to the [ 0 1
0 0 ] term while the term ba contributes

nothing.
The matrix algebra with basis {e1 = [ 1 0

0 0 ] , e2 = [ 1 1
0 0 ]} fairs a bit better.

In this case, the terms a = αe1 and b = βe2 contribute something for both
products ab and ba. Unfortunately, they do not both contribute to the
coefficients of the same vector.

ab = (αβ)e2 (6.38)

but

ba = (βα)e1 (6.39)

For both of these matrix algebras, the only finagling of α and β which will
ensure commutativity is the trivial case where the ring product is identical
to zero.

This points to a necessary condition for inducing commutativity on a non-
commutative algebra with some non-trivial ring. For any two basis elements
ei and ej of the algebra, the products eiej and ejei must, at the very least,
both contribute to the coefficients of the same basis vectors.

7. Summary of Results

The multiplicative structure of the basis elements of the Clifford algebras
allows one to induce commutativity in the algebra by taking the algebra
over certain rings. For the Clifford algebras, these rings are precisely those
commutative rings R where for any α, β ∈ R we have that α · β + α · β =
2 ·α ·β = 0. In this paper, we demonstrated a plethora of commutative rings
that meet this requirement.

Additionally, we explored some non-commutative algebras which could
not be induced to commute over any non-trivial rings. We showed that, at
the very least, any two basis elements ei and ej of the algebra must con-
tribute to the same coefficients when multiplied eiej and ejei. Future work
on this topic could reveal other requirements on the algebra. For example,
if eiej = ρejei, can commutativity still be induced if ρ /∈ {−1, 0, 1}?

8. Concluding Remarks

I feel I rather thoroughly explored the requirements on the ring of coeffi-
cients for the Clifford algebras. But, I wish I had more time to explore the
requirements on other algebras and to formulate more of the necessary and
some of the sufficient conditions of the underlying algebras.

I read almost all of the [Lounesto] book and most of the [Dixon] book
in preparing to write this paper. Both of them are very interesting. The
[Dixon] book assumes a great deal of background knowledge in quantum
mechanics and algebra that I just do not have. But, the [Lounesto] book
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has a great deal to offer that I think any advanced student could grasp
during or after the 532 course. It also has some tacit assumptions about
the reader’s knowledge of quantum mechanics, but all of that content can
be skimmed without losing the cool information on the Clifford algebras.

With respect to the content of this paper itself, I went through many ups
and downs over the course of the quarter. One day I would be excited about
how much there is to explore in this topic. The next day I would have a
revelation that would sum up all that I had thought about the topic into
a few lines. The next day, I would have a new revelation about another
facet. In all, I think it came out to be just about the right size topic for one
quarter.
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